Processing math: 100%

Impact of FY-3D MWRI Radiance Assimilation in GRAPES 4DVar on Forecasts of Typhoon Shanshan

+ Author Affiliations + Find other works by these authors
Funds: 
Supported by the National Natural Science Foundation of China (41675108), National Key Research and Development Program (2018YFC1506700), and Second Tibetan Plateau Scientific Expedition and Research Program (2019QZKK0105)

PDF

  • In this study, Fengyun-3D (FY-3D) MicroWave Radiation Imager (MWRI) radiance data were directly assimilated into the Global/Regional Assimilation and PrEdiction System (GRAPES) four-dimensional variational (4DVar) system. Quality control procedures were developed for MWRI applications by using algorithms from similar microwave instruments. Compared with the FY-3C MWRI, the bias of FY-3D MWRI observations did not show a clear node-dependent difference from the numerical weather prediction background simulation. A conventional bias correction approach can therefore be used to remove systematic biases before the assimilation of data. After assimilating the MWRI radiance data into GRAPES, the geopotential height and humidity analysis fields were improved relative to the control experiment. There was a positive impact on the location of the subtropical high, which led to improvements in forecasts of the track of Typhoon Shanshan.
  • Fig.  8.   The 120-h typhoon track forecasts given by (a) CTL1 and EXP1, (b) CTL2 and EXP2, and (c) CTL3 and EXP3. The forecasts given by the control and sensitivity experiments are plotted as squares and triangles, respectively. The observed typhoon track is represented by circles. The time is marked along the track for each 24 h.

    Fig.  1.   Mean (O–B) of each channel for the ascending (curve with solid square) and descending (curve with empty circle) data for the FY-3D MWRI. Statistics were calculated for the 2-day data after applying the quality control procedures described in Section 3.2.

    Fig.  2.   Flow chart showing the experiment setup used in this study. The experiment contains a 1-day cycle assimilation module and a 5-day forecast module. The abbreviation “AN” represents an analysis field.

    Fig.  3.   OMB probability density function (PDF) profiles of the (a) 19-V, (b) 24-V, and (c) 37-V channels. The shadow/black bars correspond to the PDF of the OMB before/after the quality control (QC) procedures.

    Fig.  4.   Results of the quality control experiments for the 37-V channel. (a) FY-3D MERSI image of Typhoon Shanshan on 5 August 2018. (b) The pixels contaminated by oceanic clouds, which are detected by the cloud detection scheme in Section 3.2, and the pixels with LWP > 0.1 mm are plotted. (c) Image of the brightness temperature (Tb) in the MWRI 37-V channel at 0600 UTC 5 August within a ±3-h time window from the observations without quality control. (d) The remaining pixels after quality control of the data in part (c). (e) The background Tb (K) corresponding to part (c). (f) The OMB (K) corresponding to part (d).

    Fig.  5.   Difference of Tb between the 19-V and 24-V channels around North America on 4 August 2018.

    Fig.  6.   OMB PDF profiles of the (a) 19-V, (b) 24-V, and (c) 37-V channels. The shadow/black bars correspond to the PDF of the OMB before/after the bias correction (BC) procedures. The solid and dashed lines are the fitted normal distribution profiles calculated by the black and shadow bars, respectively.

    Fig.  7.   Specific humidity analysis increments in the (a, b) 850-hPa and (c, d) 23°N sections from the (a, c) EXP3 and (b, d) CTL3 experiments.

    Fig.  9.   The subtropical high represented by the contour line of 588 dagpm at 500 hPa given by (a) observational results in MICAPS (Meteorological Information Comprehensive Analysis and Process System) and (b) the forecast results in CTL3 and EXP3 at 72 h after forecast initialization. In (a), the Asian low-pressure trough is marked by the red arrowheads. In (b), the contour line of 587.1 dagpm at the same height and same time is also plotted because of some unavoidable deviation; the results of CTL3 and EXP3 are shown by dashed green line and solid blue line, respectively.

    Table  1   FY-3D MWRI channel characteristics (see http://satellite.nsmc.org.cn/PortalSite/StaticContent/DeviceIntro_FY-3_MWRI.aspx)

    Channel characteristicFrequency (GHz)
    10.6518.723.836.589.0
    PolarizationVHVHVHVHVH
    Abbreviation10-V10-H19-V19-H24-V24-H37-V37-H89-V89-H
    Bandwidth (MHz)1802004004003000
    NEΔT (K)0.50.50.50.50.8
    IFOV (km2)51 × 8530 × 5027 × 4518 × 309 × 15
    Pixel (km2)40 × 11.240 × 11.220 × 11.220 × 11.210 × 11.2
    Range (K)3–340
    Number of scan positions266
    Scanning techniqueConical
    Swath width (km)1400
    Zenith angle (°)45 ± 0.1
    Incident angle (°)53.1
    Scan rate (s)1.8 ± 0.1
    Note: NEΔT: noise-equivalent brightness temperature (Tb).
    Download: Download as CSV

    Table  2   Coefficients a0, a1, and a2 in Eq. (6) for the MWRI

    LWPchana0a1a2
    10-V−3.87 4.470.09
    19-V−1.94 3.030.37
    37-V−0.97 2.740.39
    89-H−0.37−3.081.68
    Download: Download as CSV

    Table  3   Threshold of the LWP corresponding to the three channels assimilated in this study

    Channel10-V19-V37-V
    LWP (mm)0.30.250.1
    Download: Download as CSV
  • Alishouse, J. C., S. A. Snyder, J. Vongsathorn, et al., 1990: Determination of oceanic total precipitable water from the SSM/I. IEEE Trans. Geosci. Remote Sens., 28, 811–816. doi: 10.1109/36.58967
    Arakawa, A., and W. H. Schubert, 1974: Interaction of a cumulus cloud ensemble with the large-scale environment, Part I. J. Atmos. Sci., 31, 674–701. doi: 10.1175/1520-0469(1974)031<0674:IOACCE>2.0.CO;2
    Bao, Y. S., F. Mao, J. Z. Min, et al., 2014: Retrieval of bare soil moisture from FY-3B/MWRI data. Remote Sens. Land Resour., 26, 131–137. (in Chinese) doi: 10.6046/gtzyyg.2014.04.21
    Bettenhausen, M. H., C. K. Smith, R. M. Bevilacqua, et al., 2006: A nonlinear optimization algorithm for WindSat wind vector retrievals. IEEE Trans. Geosci. Remote Sens., 44, 597–610. doi: 10.1109/TGRS.2005.862504
    Bouttier, F., and P. Courtier, 2002: Data assimilation concepts and methods March 1999. Proceedings of ECMWF Meteorological Training Course Lecture Series, ECMWF, Bracknell, 1–58
    Chen, D. H., J. S. Xue, X. S. Yang, et al., 2008: New generation of multi-scale NWP system (GRAPES): General scientific design. Chinese Sci. Bull., 53, 3433–3445. doi: 10.1007/s11434-008-0494-z
    Chen, H., and Y. Q. Jin, 2012: In-orbit intercalibration of FY-3B/MWRI and applications for monitoring drought and flooding. J. Remote Sens., 16, 1024–1034. (in Chinese) doi: 10.11834/jrs.20121299
    Chen, L. S., 1979: On the causal analysis of typhoon tracks which turning direction westward suddenly over the sea area near the eastern China. Chinese J. Atmos. Sci., 3, 289–298. (in Chinese) doi: 10.3878/j.issn.1006-9895.1979.03.11
    Chen, X. M., Q. J. Liu, and J. C. Zhang, 2007: A numerical simulation study on microphysical structure and cloud seeding in cloud system of Qilian Mountain Region. Meteor. Mon., 33, 33–43. (in Chinese) doi: 10.3969/j.issn.1000-0526.2007.07.004
    Connor, L. N., and P. S. Chang, 2000: Ocean surface wind retrievals using the TRMM microwave imager. IEEE Trans. Geosci. Remote Sens., 38, 2009–2016. doi: 10.1109/36.851782
    Dai, Y. J., X. B. Zeng, R. E. Dickinson, et al., 2003: The common land model. Bull. Amer. Meteor. Soc., 84, 1013–1024. doi: 10.1175/BAMS-84-8-1013
    Dou, F. L., D. W. An, and J. R. Li, 2014: Sea surface wind speed retrieval based on FY-3B Microwave Imager. Remote Sens. Technol. Appl., 29, 984–992. (in Chinese)
    Feng, C. C., and H. Zhao, 2015: Identification of radio-frequency interference signal from FY-3B microwave radiation imager over ocean. J. Remote Sens., 19, 465–475. (in Chinese) doi: 10.11834/jrs.20154056
    Ferraro, R. R., F. Z. Weng, N. C. Grody, et al., 1996: An eight-year (1987–1994) time series of rainfall, clouds, water vapor, snow cover, and sea ice derived from SSM/I measurements. Bull. Amer. Meteor. Soc., 77, 891–906. doi: 10.1175/1520-0477(1996)077<0891:AEYTSO>2.0.CO;2
    Gaiser, P. W., K. M. St Germain, E. M. Twarog, et al., 2004: The WindSat spaceborne Polarimetric microwave radiometer: Sensor description and early orbit performance. IEEE Trans. Geosci. Remote Sens., 42, 2347–2361. doi: 10.1109/TGRS.2004.836867
    Geer, A. J., K. Lonitz, P. Weston, et al., 2018: All-sky satellite data assimilation at operational weather forecasting centres. Quart. J. Roy. Meteor. Soc., 144, 1191–1217. doi: 10.1002/qj.3202
    Giorgi, F., Y. Huang, K. Nishizawa, et al., 1999: A seasonal cycle simulation over eastern Asia and its sensitivity to radiative transfer and surface processes. J. Geophys. Res. Atmos., 104, 6403–6423. doi: 10.1029/1998JD200052
    Grody, N. C., and R. R. Ferraro, 1992: A comparison of passive microwave rainfall retrieval methods. Proceeding of the 6th Conference on Meteorology and Oceanography, American Meteorological Society, Atlanta, 60–65.
    Guo, L., H. Sheng, J. Wang, et al., 2017: Retrieving near sea surface air temperature by AMSR2 radiometer. Adv. Mar. Sci., 35, 124–130. (in Chinese) doi: 10.3969/j.issn.1671-6647.2017.01.013
    Han, W., and N. Bormann, 2016: Constrained adaptive bias correction for satellite radiance assimilation in the ECMWF 4D-Var system. Technical Memorandum No. 783, ECMWF, Shinfield Park, Reading, 26 pp.
    Hargens, U., C. Simmer, and E. Ruprecht, 1992: Remote sensing of cloud liquid water during ICE’89. Proceedings of Specialist Meeting on Microwave Radiometry and Remote Sensing Applications, IEEE, Boulder, Colorado, 27–31.
    Harris, B. A., and G. Kelly, 2001: A satellite radiance-bias correction scheme for data assimilation. Quart. J. Roy. Meteor. Soc., 127, 1453–1468. doi: 10.1002/qj.49712757418
    Hollinger, J. P., J. L. Peirce, and G. A. Poe, 1990: SSM/I instrument evaluation. IEEE Trans. Geosci. Remote Sens., 28, 781–790. doi: 10.1109/36.58964
    Hong, S. Y., and H. L. Pan, 1996: Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Mon. Wea. Rev., 124, 2322–2339. doi: 10.1175/1520-0493(1996)124<2322:NBLVDI>2.0.CO;2
    Huang, W., Y. L. Hao, J. Wang, et al., 2013: Brightness temperature data comparison and evaluation of FY-3B microwave radiation imager with AMSR-E. Period. Ocean Univ. China, 43, 99–111. (in Chinese) doi: 10.16441/j.cnki.hdxb.2013.11.015
    JAXA, 2013: GCOM-W1 “SHIZUKU” Data Users Handbook, Japan Aerospace Exploration Agency. Tsukuba, Japan, 125 pp. Available online at https://gportal.jaxa.jp/gpr/assets/mng_upload/GCOM-W/GCOM-W1_SHIZUKU_Data_Users_Handbook_EN.pdf. Accessed on 19 August 2020.
    Kawanishi, T., T. Sezai, Y. Ito, et al., 2003: The advanced microwave scanning radiometer for the Earth observing system (AMSR-E), NASDA’S contribution to the EOS for global energy and water cycle studies. IEEE Trans. Geosci. Remote Sens., 41, 184–194. doi: 10.1109/TGRS.2002.808331
    Kazumori, M., Q. H. Liu, R. Treadon, et al., 2008: Impact study of AMSR-E radiances in the NCEP global data assimilation system. Mon. Wea. Rev., 136, 541–559. doi: 10.1175/2007MWR2147.1
    Kazumori, M., A. J. Geer, and S. J. English, 2014: Effects of all-sky assimilation of GCOM-W1/AMSR2 radiances in the ECMWF system. Technical Memo 732, ECMWF, Reading, 1–34.
    Krasnopolsky, V. M., L. C. Breaker, and W. H. Gemmill, 1995: A neural network as a nonlinear transfer function model for retrieving surface wind speeds from the special sensor microwave imager. J. Geophys. Res. Oceans, 100, 11,033–11,045. doi: 10.1029/95JC00857
    Kummerow, C., J. Simpson, O. Thiele, et al., 2000: The status of the Tropical Rainfall Measuring Mission (TRMM) after two years in orbit. J. Appl. Meteor., 39, 1965–1982. doi: 10.1175/1520-0450(2001)040<1965:TSOTTR>2.0.CO;2
    Kuria, D., and T. Koike, 2011: Convective cloud discrimination using multi-frequency microwave signatures of the AMSR-E sensor: Evaluation over the Tibetan Plateau. Int. J. Remote Sens., 32, 3451–3460. doi: 10.1080/01431161003749451
    Lawrence, H., F. Carminati, W. Bell, et al., 2017: An Evaluation of FY-3C MWRI and Assessment of the Long-term Quality of FY-3C MWHS-2 at ECMWF and the Met Office. ECMWF Technical Memoranda 798, ECMWF, doi: 10.21957/lhuph6fb3.
    Lee, D.-K., and M.-S. Suh, 2000: Ten-year East Asian summer monsoon simulation using a regional climate model (RegCM2). J. Geophys. Res. Atmos., 105, 29565–29577. doi: 10.1029/2000JD900438
    Li, L., E. G. Njoku, E. Im, et al., 2004: A preliminary survey of radio-frequency interference over the US in Aqua AMSR-E data. IEEE Trans. Geosci. Remote Sens., 42, 380–390. doi: 10.1109/TGRS.2003.817195
    Li, X. Q., H. Yang, R. You, et al., 2012: Remote sensing Typhoon Songda’s rainfall structure based on Microwave Radiation Imager of FY-3B satellite. Chinese J. Geophys., 55, 2843–2853. (in Chinese)
    Liu, K., Q. Y. Chen, and J. Sun, 2015: Modification of cumulus convection and planetary boundary layer schemes in the GRAPES global model. J. Meteor. Res., 29, 806–822. doi: 10.1007/s13351-015-5043-5
    Liu, Q. J., Z. J. Hu, and X. J. Zhou, 2003: Explicit cloud schemes of HLAFS and simulation of heavy rainfall and clouds. Part I: Explicit cloud schemes. J. Appl. Meteor. Sci., 14, 60–67. (in Chinese) doi: 10.3969/j.issn.1001-7313.2003.z1.008
    Liu, Z. Q., and F. Rabier, 2002: The interaction between model resolution, observation resolution and observation density in data assimilation: A one-dimensional study. Quart. J. Roy. Meteor. Soc., 128, 1367–1386. doi: 10.1256/003590002320373337
    Liu, Z. Q., F. Y. Zhang, X. B. Wu, et al., 2007: A regional ATOVS radiance-bias correction scheme for rediance assimilation. Acta Meteor. Sinica, 65, 113–123. (in Chinese) doi: 10.3321/j.issn:0577-6619.2007.01.011
    Liu, Z. Q., C. S. Schwartz, C. Snyder, et al., 2012: Impact of assimilating AMSU-A radiances on forecasts of 2008 Atlantic tropical cyclones initialized with a limited-area Ensemble Kalman Filter. Mon. Wea. Rev., 140, 4017–4034. doi: 10.1175/MWR-D-12-00083.1
    Ma, Z. S., Q. J. Liu, C. F. Zhao, et al., 2018: Application and evaluation of an explicit prognostic cloud-cover scheme in GRAPES global forecast system. J. Adv. Model. Earth Syst., 10, 652–667. doi: 10.1002/2017MS001234
    Madrid, C. R., 1978: The Nimbus 7 User’s Guide. NAS5-23740, NASA Goddard Space Flight Center, Greenbelt.
    Moncet, J.-L., P. Liang, J. F. Galantowicz, et al., 2011: Land surface microwave emissivities derived from AMSR-E and MODIS measurements with advanced quality control. J. Geophys. Res. Atmos., 116, D16104. doi: 10.1029/2010JD015429
    Morcrette, J.-J., H. W. Barker, J. N. S. Cole, et al., 2008: Impact of a new radiation package, McRad, in the ECMWF integrated forecasting system. Mon. Wea. Rev., 136, 4773–4798. doi: 10.1175/2008MWR2363.1
    Nielsen-Englyst, P., J. L. Hoyer, L. T. Pedersen, et al., 2018: Optimal estimation of sea surface temperature from AMSR-E. Remote Sens., 10, 229. doi: 10.3390/rs10020229
    Oki, T., K. Imaoka, and M. Kachi, 2010: AMSR instruments on GCOM-W1/2: Concepts and applications. Proceedings of 2010 IEEE International Geoscience and Remote Sensing Symposium, IEEE, Honolulu, HI, 1363–1366, doi: 10.1109/IGARSS.2010.5650001.
    Pan, H.-L., and W. S. Wu, 1995: Implementing a mass flux convective parameterization package for the NMC medium-range forecast model. NMC Office Note 409, NMC, Washington, DC, 1–40.
    Peng, L. C., W. B. Li, and H. Z. Liu, 2011: Estimation of the soil moisture using FY-3A/MWRI data over semiarid areas. Acta Sci. Nat. Univ. Pekin., 47, 797–804. (in Chinese) doi: 10.13209/j.0479-8023.2011.111
    Pincus, R., H. W. Barker, and J.-J. Morcrette, 2003: A fast, flexible, approximate technique for computing radiative transfer in inhomogeneous cloud fields. J. Geophys. Res. Atmos., 108, 4376. doi: 10.1029/2002JD003322
    Spreen, G., L. Kaleschke, and G. Heygster, 2008: Sea ice remote sensing using AMSR-E 89-GHz channels. J. Geophys. Res. Oceans, 113, C02S03. doi: 10.1029/2005JC003384
    Su, J., G. H. Hao, X. X. Ye, et al., 2013: The experiment and validation of sea ice concentration AMSR-E retrieval algorithm in polar region. J. Remote Sens., 17, 495–513. (in Chinese) doi: 10.11834/jrs.20132043
    Sun, L. E., J. Wang, T. W. Cui, et al., 2012: Statistical retrieval algorithms of the sea surface temperature (SST) and wind speed (SSW) for FY-3B Microwave Radiometer Imager (MWRI). J. Remote Sens., 16, 1262–1271. (in Chinese) doi: 10.11834/jrs.20121323
    Sun, N. H., and F. Z. Weng, 2008: Evaluation of special sensor microwave imager/sounder (SSMIS) environmental data records. IEEE Trans. Geosci. Remote Sens., 46, 1006–1016. doi: 10.1109/TGRS.2008.917368
    Tang, F., and X. L. Zou, 2017: Liquid water path retrieval using the lowest frequency channels of FengYun-3C microwave radiation imager (MWRI). J. Meteor. Res., 31, 1109–1122. doi: 10.1007/s13351-017-7012-7
    Tang, F., and X. L. Zou, 2018: Diurnal variation of liquid water path derived from two polar-orbiting FengYun-3 MicroWave Radiation Imagers. Geophys. Res. Lett., 45, 6281–6288. doi: 10.1029/2018GL077857
    Tiedtke, M., 1993: Representation of clouds in large-scale models. Mon. Wea. Rev., 121, 3040–3061. doi: 10.1175/1520-0493(1993)121<3040:ROCILS>2.0.CO;2
    Wang, J. C., H. J. Lu, W. Han, et al., 2017: Improvements and performances of the operational GRAPES_GFS 3DVar system. J. Appl. Meteor. Sci., 28, 11–24. (in Chinese) doi: 10.11898/1001-7313.20170102
    Weng, F. Z., N. C. Grody, R. Ferraro, et al., 1997: Cloud liquid water climatology from the special sensor microwave/imager. J. Climate, 10, 1086–1098. doi: 10.1175/1520-0442(1997)010<1086:clwcft>2.0.co;2
    Wu, Q., L. Yang, and H. Yang, 2012: Image quality evaluation of MWRI from FY-3B satellite. Remote Sens. Technol. Appl., 27, 542–548. (in Chinese) doi: 10.11873/j.issn.1004-0323.2012.4.542
    Wu, Y., and F. Z. Weng, 2011: Detection and correction of AMSR-E radio-frequency interference. Acta Meteor. Sinica, 25, 669–681. doi: 10.1007/s13351-011-0510-0
    Xie, X. X., S. L. Wu, H. X. Xu, et al., 2019: Ascending–descending bias correction of microwave radiation imager on board FengYun-3C. IEEE Trans. Geosci. Remote Sens., 57, 3126–3134. doi: 10.1109/TGRS.2018.2881094
    Xue, J. S., and D. H. Chen, 2008: Scientific Design and Application of Numerical Prediction System GRAPES. Science Press, Beijing, 383 pp. (in Chinese)
    Xue, J. S., S. Y. Zhuang, G. F. Zhu, et al., 2008: Scientific design and preliminary results of three-dimensional variational data assimilation system of GRAPES. Chinese Sci. Bull., 53, 3446–3457. doi: 10.1007/s11434-008-0416-0
    Yang, C., Z. Q. Liu, J. Bresch, et al., 2016: AMSR2 all-sky radiance assimilation and its impact on the analysis and forecast of Hurricane Sandy with a limited-area data assimilation system. Tellus A, 68, 30917. doi: 10.3402/tellusa.v68.30917
    Yang, C., J. Z. Min, and Z. Q. Liu, 2017: The impact of AMSR2 radiance data assimilation on the analysis and forecast of Typhoon Son-Tinh. Chinese J. Atmos. Sci., 41, 372–384. (in Chinese) doi: 10.3878/j.issn.1006-9895.1608.16127
    Yang, H., X. Q. Li, R. You, et al., 2013: Environmental data records from FengYun-3B microwave radiation imager. Adv. Meteor. Sci. Technol., 3, 136–143. (in Chinese)
    Yin, H. G., Q. Wu, S. Y. Gu, et al., 2016: Analysis of rainfall measurement power in the FY-3(03) rain measurement satellite. Adv. Meteor. Sci. Technol., 6, 55–61. (in Chinese)
    Yu, Z. W., J. W. Liu, J. P. Huang, et al., 2017: Assimilation experiment of AMSR2 microwave imaging data and its influence on typhoon forecasting. Meteor. Hydrol. Mar. Instrum., 34, 1–8. (in Chinese)
    Yu, Z. W., J. W. Liu, Z. Zhong, et al., 2018: Assimilation experiment of AMSR2 microwave imaging data under cloudy and rainy condition and its application on the forecast of a typhoon process. J. Meteor. Sci., 38, 203–211. (in Chinese)
    Zhang, L., Y. Z. Liu, Y. Liu, et al., 2019a: The operational global four-dimensional variational data assimilation system at the China Meteorological Administration. Quart. J. Roy. Meteor. Soc., 145, 1882–1896. doi: 10.1002/qj.3533
    Zhang, M., H. Qiu, X. Fang, et al., 2015: Study on the multivariate statistical estimation of tropical cyclone intensity using FY-3 MWRI brightness temperature data. J. Trop. Meteor., 31, 87–94. (in Chinese) doi: 10.16032/j.issn.1004-4965.2015.01.010
    Zhang, M., Q. F. Lu, S. Y. Gu, et al., 2019b: Analysis and correction of the difference between the ascending and descending orbits of the FY-3C microwave imager. J. Remote Sens., 23, 841–849. (in Chinese) doi: 10.11834/jrs.20198235
    Zhang, S. J., L. S. Chen, and X. D. Xu, 2005: The diagnoses and numerical simulation on the unusual track of Helen (9505). Chinese J. Atmos. Sci., 29, 937–946. (in Chinese) doi: 10.3878/j.issn.1006-9895.2005.06.09
    Zhao, Y. L., 2013: Retrieval algorithm of sea surface wind vectors for WindSat based on a simple forward model. Chinese J. Oceanol. Limn., 31, 210–218. doi: 10.1007/s00343-013-2079-1
    Zhao, Y. L., and M. X. He, 2013: A simplified forward model of WindSat for sea surface wind vector retrieving. Period. Ocean Univ. China, 43, 98–105. (in Chinese) doi: 10.16441/j.cnki.hdxb.2013.12.016
    Zhou, Y. Q., and J. H. Yu, 2015: Circulation characteristics of track variation anomaly of tropical cyclone in the northwestern Pacific. J. Meteor. Sci., 35, 720–727. (in Chinese)
    Zhou, Z. H., X. L. Zou, and Z. K. Qin, 2017: Detection and analysis of television frequency interference from an FY-3C microwave radiation imager. J. Remote Sens., 21, 689–701. doi: 10.11834/jrs.20176364
    Zhu, E. Z., L. Zhang, H. Q. Shi, et al., 2016: Accuracy of WindSat sea surface temperature: Comparison of buoy data from 2004 to 2013. J. Remote Sens., 20, 315–327. (in Chinese) doi: 10.11834/jrs.20165093
    Zou, X. L., 2012: Introduction to microwave imager radiance observations from polar-orbiting meteorological satellites. Adv. Meteor. Sci. Technol., 2, 45–50. (in Chinese)
    Zou, X. L., J. Zhao, F. Z. Weng, et al., 2012: Detection of radio-frequency interference signal over land from FY-3B Microwave Radiation Imager (MWRI). IEEE Trans. Geosci. Remote Sens., 50, 4994–5003. doi: 10.1109/TGRS.2012.2191792
    Zou, X. L., J. Zhao, F. Z. Weng, et al., 2013: Detection of radio-frequency interference signal over land from FY-3B Microwave Radiation Imager (MWRI). Adv. Meteor. Sci. Tech-nol., 3, 144–153. (in Chinese)
  • Related Articles

  • Other Related Supplements

  • Cited by

    Periodical cited type(9)

    1. Yu Huang, Juan Li, Zhengkun Qin. Evaluation of the FY-3E microwave temperature sounding data assimilation on forecasting Typhoon Chanthu (2021). Meteorology and Atmospheric Physics, 2023, 135(6) DOI:10.1007/s00703-023-00989-8
    2. Zhengkun Qin, Xiaolei Zou. Impacts of satellite data assimilation with different model vertical levels on QPFs downstream of the Tibetan Plateau. Meteorology and Atmospheric Physics, 2021, 133(3): 495. DOI:10.1007/s00703-020-00765-y
    3. Thomas A. Jones, Patrick Skinner, Nusrat Yussouf, et al. Assimilation of GOES-16 Radiances and Retrievals into the Warn-on-Forecast System. Monthly Weather Review, 2020, 148(5): 1829. DOI:10.1175/MWR-D-19-0379.1
    4. Rucong Yu, Yi Zhang, Jianjie Wang, et al. Recent Progress in Numerical Atmospheric Modeling in China. Advances in Atmospheric Sciences, 2019, 36(9): 938. DOI:10.1007/s00376-019-8203-1
    5. Thomas A. Jones, Xuguang Wang, Patrick Skinner, et al. Assimilation of GOES-13 Imager Clear-Sky Water Vapor (6.5 μm) Radiances into a Warn-on-Forecast System. Monthly Weather Review, 2018, 146(4): 1077. DOI:10.1175/MWR-D-17-0280.1
    6. Zhigang YAO, Jun HONG, Zhigang HAN, et al. Numerical Simulation of Typhoon-generated Gravity Waves Observed by Satellite and its Direct Validationormalsize. Chinese Journal of Space Science, 2018, 38(2): 188. DOI:10.11728/cjss2018.02.188
    7. X. Zou, Z. Qin, F. Weng. Impacts from assimilation of one data stream of AMSU‐A and MHS radiances on quantitative precipitation forecasts. Quarterly Journal of the Royal Meteorological Society, 2017, 143(703): 731. DOI:10.1002/qj.2960
    8. Zhengkun Qin, Xiaolei Zou. Development and initial assessment of a new land index for microwave humidity sounder cloud detection. Journal of Meteorological Research, 2016, 30(1): 12. DOI:10.1007/s13351-016-5076-4
    9. Atmospheric Satellite Observations. DOI:10.1016/B978-0-12-820950-9.00017-9

    Other cited types(0)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return