Alishouse, J. C., S. A. Snyder, J. Vongsathorn, et al., 1990: Determination of oceanic total precipitable water from the SSM/I. IEEE Trans. Geosci. Remote Sens., 28, 811–816. doi: 10.1109/36.58967
|
|
Bao, Y. S., F. Mao, J. Z. Min, et al., 2014: Retrieval of bare soil moisture from FY-3B/MWRI data. Remote Sens. Land Resour., 26, 131–137. (in Chinese) doi: 10.6046/gtzyyg.2014.04.21
|
Bettenhausen, M. H., C. K. Smith, R. M. Bevilacqua, et al., 2006: A nonlinear optimization algorithm for WindSat wind vector retrievals. IEEE Trans. Geosci. Remote Sens., 44, 597–610. doi: 10.1109/TGRS.2005.862504
|
Bouttier, F., and P. Courtier, 2002: Data assimilation concepts and methods March 1999. Proceedings of ECMWF Meteorological Training Course Lecture Series, ECMWF, Bracknell, 1–58
|
Chen, D. H., J. S. Xue, X. S. Yang, et al., 2008: New generation of multi-scale NWP system (GRAPES): General scientific design. Chinese Sci. Bull., 53, 3433–3445. doi: 10.1007/s11434-008-0494-z
|
Chen, H., and Y. Q. Jin, 2012: In-orbit intercalibration of FY-3B/MWRI and applications for monitoring drought and flooding. J. Remote Sens., 16, 1024–1034. (in Chinese) doi: 10.11834/jrs.20121299
|
Chen, L. S., 1979: On the causal analysis of typhoon tracks which turning direction westward suddenly over the sea area near the eastern China. Chinese J. Atmos. Sci., 3, 289–298. (in Chinese) doi: 10.3878/j.issn.1006-9895.1979.03.11
|
Chen, X. M., Q. J. Liu, and J. C. Zhang, 2007: A numerical simulation study on microphysical structure and cloud seeding in cloud system of Qilian Mountain Region. Meteor. Mon., 33, 33–43. (in Chinese) doi: 10.3969/j.issn.1000-0526.2007.07.004
|
Connor, L. N., and P. S. Chang, 2000: Ocean surface wind retrievals using the TRMM microwave imager. IEEE Trans. Geosci. Remote Sens., 38, 2009–2016. doi: 10.1109/36.851782
|
Dai, Y. J., X. B. Zeng, R. E. Dickinson, et al., 2003: The common land model. Bull. Amer. Meteor. Soc., 84, 1013–1024. doi: 10.1175/BAMS-84-8-1013
|
Dou, F. L., D. W. An, and J. R. Li, 2014: Sea surface wind speed retrieval based on FY-3B Microwave Imager. Remote Sens. Technol. Appl., 29, 984–992. (in Chinese)
|
Feng, C. C., and H. Zhao, 2015: Identification of radio-frequency interference signal from FY-3B microwave radiation imager over ocean. J. Remote Sens., 19, 465–475. (in Chinese) doi: 10.11834/jrs.20154056
|
Ferraro, R. R., F. Z. Weng, N. C. Grody, et al., 1996: An eight-year (1987–1994) time series of rainfall, clouds, water vapor, snow cover, and sea ice derived from SSM/I measurements. Bull. Amer. Meteor. Soc., 77, 891–906. doi: 10.1175/1520-0477(1996)077<0891:AEYTSO>2.0.CO;2
|
Gaiser, P. W., K. M. St Germain, E. M. Twarog, et al., 2004: The WindSat spaceborne Polarimetric microwave radiometer: Sensor description and early orbit performance. IEEE Trans. Geosci. Remote Sens., 42, 2347–2361. doi: 10.1109/TGRS.2004.836867
|
Geer, A. J., K. Lonitz, P. Weston, et al., 2018: All-sky satellite data assimilation at operational weather forecasting centres. Quart. J. Roy. Meteor. Soc., 144, 1191–1217. doi: 10.1002/qj.3202
|
Giorgi, F., Y. Huang, K. Nishizawa, et al., 1999: A seasonal cycle simulation over eastern Asia and its sensitivity to radiative transfer and surface processes. J. Geophys. Res. Atmos., 104, 6403–6423. doi: 10.1029/1998JD200052
|
Grody, N. C., and R. R. Ferraro, 1992: A comparison of passive microwave rainfall retrieval methods. Proceeding of the 6th Conference on Meteorology and Oceanography, American Meteorological Society, Atlanta, 60–65.
|
Guo, L., H. Sheng, J. Wang, et al., 2017: Retrieving near sea surface air temperature by AMSR2 radiometer. Adv. Mar. Sci., 35, 124–130. (in Chinese) doi: 10.3969/j.issn.1671-6647.2017.01.013
|
Han, W., and N. Bormann, 2016: Constrained adaptive bias correction for satellite radiance assimilation in the ECMWF 4D-Var system. Technical Memorandum No. 783, ECMWF, Shinfield Park, Reading, 26 pp.
|
Hargens, U., C. Simmer, and E. Ruprecht, 1992: Remote sensing of cloud liquid water during ICE’89. Proceedings of Specialist Meeting on Microwave Radiometry and Remote Sensing Applications, IEEE, Boulder, Colorado, 27–31.
|
Harris, B. A., and G. Kelly, 2001: A satellite radiance-bias correction scheme for data assimilation. Quart. J. Roy. Meteor. Soc., 127, 1453–1468. doi: 10.1002/qj.49712757418
|
Hollinger, J. P., J. L. Peirce, and G. A. Poe, 1990: SSM/I instrument evaluation. IEEE Trans. Geosci. Remote Sens., 28, 781–790. doi: 10.1109/36.58964
|
|
Huang, W., Y. L. Hao, J. Wang, et al., 2013: Brightness temperature data comparison and evaluation of FY-3B microwave radiation imager with AMSR-E. Period. Ocean Univ. China, 43, 99–111. (in Chinese) doi: 10.16441/j.cnki.hdxb.2013.11.015
|
|
Kawanishi, T., T. Sezai, Y. Ito, et al., 2003: The advanced microwave scanning radiometer for the Earth observing system (AMSR-E), NASDA’S contribution to the EOS for global energy and water cycle studies. IEEE Trans. Geosci. Remote Sens., 41, 184–194. doi: 10.1109/TGRS.2002.808331
|
Kazumori, M., Q. H. Liu, R. Treadon, et al., 2008: Impact study of AMSR-E radiances in the NCEP global data assimilation system. Mon. Wea. Rev., 136, 541–559. doi: 10.1175/2007MWR2147.1
|
Kazumori, M., A. J. Geer, and S. J. English, 2014: Effects of all-sky assimilation of GCOM-W1/AMSR2 radiances in the ECMWF system. Technical Memo 732, ECMWF, Reading, 1–34.
|
Krasnopolsky, V. M., L. C. Breaker, and W. H. Gemmill, 1995: A neural network as a nonlinear transfer function model for retrieving surface wind speeds from the special sensor microwave imager. J. Geophys. Res. Oceans, 100, 11,033–11,045. doi: 10.1029/95JC00857
|
|
Kuria, D., and T. Koike, 2011: Convective cloud discrimination using multi-frequency microwave signatures of the AMSR-E sensor: Evaluation over the Tibetan Plateau. Int. J. Remote Sens., 32, 3451–3460. doi: 10.1080/01431161003749451
|
Lawrence, H., F. Carminati, W. Bell, et al., 2017: An Evaluation of FY-3C MWRI and Assessment of the Long-term Quality of FY-3C MWHS-2 at ECMWF and the Met Office. ECMWF Technical Memoranda 798, ECMWF, doi: 10.21957/lhuph6fb3.
|
Lee, D.-K., and M.-S. Suh, 2000: Ten-year East Asian summer monsoon simulation using a regional climate model (RegCM2). J. Geophys. Res. Atmos., 105, 29565–29577. doi: 10.1029/2000JD900438
|
Li, L., E. G. Njoku, E. Im, et al., 2004: A preliminary survey of radio-frequency interference over the US in Aqua AMSR-E data. IEEE Trans. Geosci. Remote Sens., 42, 380–390. doi: 10.1109/TGRS.2003.817195
|
Li, X. Q., H. Yang, R. You, et al., 2012: Remote sensing Typhoon Songda’s rainfall structure based on Microwave Radiation Imager of FY-3B satellite. Chinese J. Geophys., 55, 2843–2853. (in Chinese)
|
Liu, K., Q. Y. Chen, and J. Sun, 2015: Modification of cumulus convection and planetary boundary layer schemes in the GRAPES global model. J. Meteor. Res., 29, 806–822. doi: 10.1007/s13351-015-5043-5
|
Liu, Q. J., Z. J. Hu, and X. J. Zhou, 2003: Explicit cloud schemes of HLAFS and simulation of heavy rainfall and clouds. Part I: Explicit cloud schemes. J. Appl. Meteor. Sci., 14, 60–67. (in Chinese) doi: 10.3969/j.issn.1001-7313.2003.z1.008
|
Liu, Z. Q., and F. Rabier, 2002: The interaction between model resolution, observation resolution and observation density in data assimilation: A one-dimensional study. Quart. J. Roy. Meteor. Soc., 128, 1367–1386. doi: 10.1256/003590002320373337
|
Liu, Z. Q., F. Y. Zhang, X. B. Wu, et al., 2007: A regional ATOVS radiance-bias correction scheme for rediance assimilation. Acta Meteor. Sinica, 65, 113–123. (in Chinese) doi: 10.3321/j.issn:0577-6619.2007.01.011
|
Liu, Z. Q., C. S. Schwartz, C. Snyder, et al., 2012: Impact of assimilating AMSU-A radiances on forecasts of 2008 Atlantic tropical cyclones initialized with a limited-area Ensemble Kalman Filter. Mon. Wea. Rev., 140, 4017–4034. doi: 10.1175/MWR-D-12-00083.1
|
Ma, Z. S., Q. J. Liu, C. F. Zhao, et al., 2018: Application and evaluation of an explicit prognostic cloud-cover scheme in GRAPES global forecast system. J. Adv. Model. Earth Syst., 10, 652–667. doi: 10.1002/2017MS001234
|
Madrid, C. R., 1978: The Nimbus 7 User’s Guide. NAS5-23740, NASA Goddard Space Flight Center, Greenbelt.
|
Moncet, J.-L., P. Liang, J. F. Galantowicz, et al., 2011: Land surface microwave emissivities derived from AMSR-E and MODIS measurements with advanced quality control. J. Geophys. Res. Atmos., 116, D16104. doi: 10.1029/2010JD015429
|
Morcrette, J.-J., H. W. Barker, J. N. S. Cole, et al., 2008: Impact of a new radiation package, McRad, in the ECMWF integrated forecasting system. Mon. Wea. Rev., 136, 4773–4798. doi: 10.1175/2008MWR2363.1
|
Nielsen-Englyst, P., J. L. Hoyer, L. T. Pedersen, et al., 2018: Optimal estimation of sea surface temperature from AMSR-E. Remote Sens., 10, 229. doi: 10.3390/rs10020229
|
Oki, T., K. Imaoka, and M. Kachi, 2010: AMSR instruments on GCOM-W1/2: Concepts and applications. Proceedings of 2010 IEEE International Geoscience and Remote Sensing Symposium, IEEE, Honolulu, HI, 1363–1366, doi: 10.1109/IGARSS.2010.5650001.
|
Pan, H.-L., and W. S. Wu, 1995: Implementing a mass flux convective parameterization package for the NMC medium-range forecast model. NMC Office Note 409, NMC, Washington, DC, 1–40.
|
Peng, L. C., W. B. Li, and H. Z. Liu, 2011: Estimation of the soil moisture using FY-3A/MWRI data over semiarid areas. Acta Sci. Nat. Univ. Pekin., 47, 797–804. (in Chinese) doi: 10.13209/j.0479-8023.2011.111
|
Pincus, R., H. W. Barker, and J.-J. Morcrette, 2003: A fast, flexible, approximate technique for computing radiative transfer in inhomogeneous cloud fields. J. Geophys. Res. Atmos., 108, 4376. doi: 10.1029/2002JD003322
|
Spreen, G., L. Kaleschke, and G. Heygster, 2008: Sea ice remote sensing using AMSR-E 89-GHz channels. J. Geophys. Res. Oceans, 113, C02S03. doi: 10.1029/2005JC003384
|
Su, J., G. H. Hao, X. X. Ye, et al., 2013: The experiment and validation of sea ice concentration AMSR-E retrieval algorithm in polar region. J. Remote Sens., 17, 495–513. (in Chinese) doi: 10.11834/jrs.20132043
|
Sun, L. E., J. Wang, T. W. Cui, et al., 2012: Statistical retrieval algorithms of the sea surface temperature (SST) and wind speed (SSW) for FY-3B Microwave Radiometer Imager (MWRI). J. Remote Sens., 16, 1262–1271. (in Chinese) doi: 10.11834/jrs.20121323
|
Sun, N. H., and F. Z. Weng, 2008: Evaluation of special sensor microwave imager/sounder (SSMIS) environmental data records. IEEE Trans. Geosci. Remote Sens., 46, 1006–1016. doi: 10.1109/TGRS.2008.917368
|
Tang, F., and X. L. Zou, 2017: Liquid water path retrieval using the lowest frequency channels of FengYun-3C microwave radiation imager (MWRI). J. Meteor. Res., 31, 1109–1122. doi: 10.1007/s13351-017-7012-7
|
Tang, F., and X. L. Zou, 2018: Diurnal variation of liquid water path derived from two polar-orbiting FengYun-3 MicroWave Radiation Imagers. Geophys. Res. Lett., 45, 6281–6288. doi: 10.1029/2018GL077857
|
|
Wang, J. C., H. J. Lu, W. Han, et al., 2017: Improvements and performances of the operational GRAPES_GFS 3DVar system. J. Appl. Meteor. Sci., 28, 11–24. (in Chinese) doi: 10.11898/1001-7313.20170102
|
|
Wu, Q., L. Yang, and H. Yang, 2012: Image quality evaluation of MWRI from FY-3B satellite. Remote Sens. Technol. Appl., 27, 542–548. (in Chinese) doi: 10.11873/j.issn.1004-0323.2012.4.542
|
Wu, Y., and F. Z. Weng, 2011: Detection and correction of AMSR-E radio-frequency interference. Acta Meteor. Sinica, 25, 669–681. doi: 10.1007/s13351-011-0510-0
|
Xie, X. X., S. L. Wu, H. X. Xu, et al., 2019: Ascending–descending bias correction of microwave radiation imager on board FengYun-3C. IEEE Trans. Geosci. Remote Sens., 57, 3126–3134. doi: 10.1109/TGRS.2018.2881094
|
Xue, J. S., and D. H. Chen, 2008: Scientific Design and Application of Numerical Prediction System GRAPES. Science Press, Beijing, 383 pp. (in Chinese)
|
Xue, J. S., S. Y. Zhuang, G. F. Zhu, et al., 2008: Scientific design and preliminary results of three-dimensional variational data assimilation system of GRAPES. Chinese Sci. Bull., 53, 3446–3457. doi: 10.1007/s11434-008-0416-0
|
Yang, C., Z. Q. Liu, J. Bresch, et al., 2016: AMSR2 all-sky radiance assimilation and its impact on the analysis and forecast of Hurricane Sandy with a limited-area data assimilation system. Tellus A, 68, 30917. doi: 10.3402/tellusa.v68.30917
|
Yang, C., J. Z. Min, and Z. Q. Liu, 2017: The impact of AMSR2 radiance data assimilation on the analysis and forecast of Typhoon Son-Tinh. Chinese J. Atmos. Sci., 41, 372–384. (in Chinese) doi: 10.3878/j.issn.1006-9895.1608.16127
|
Yang, H., X. Q. Li, R. You, et al., 2013: Environmental data records from FengYun-3B microwave radiation imager. Adv. Meteor. Sci. Technol., 3, 136–143. (in Chinese)
|
Yin, H. G., Q. Wu, S. Y. Gu, et al., 2016: Analysis of rainfall measurement power in the FY-3(03) rain measurement satellite. Adv. Meteor. Sci. Technol., 6, 55–61. (in Chinese)
|
Yu, Z. W., J. W. Liu, J. P. Huang, et al., 2017: Assimilation experiment of AMSR2 microwave imaging data and its influence on typhoon forecasting. Meteor. Hydrol. Mar. Instrum., 34, 1–8. (in Chinese)
|
Yu, Z. W., J. W. Liu, Z. Zhong, et al., 2018: Assimilation experiment of AMSR2 microwave imaging data under cloudy and rainy condition and its application on the forecast of a typhoon process. J. Meteor. Sci., 38, 203–211. (in Chinese)
|
Zhang, L., Y. Z. Liu, Y. Liu, et al., 2019a: The operational global four-dimensional variational data assimilation system at the China Meteorological Administration. Quart. J. Roy. Meteor. Soc., 145, 1882–1896. doi: 10.1002/qj.3533
|
Zhang, M., H. Qiu, X. Fang, et al., 2015: Study on the multivariate statistical estimation of tropical cyclone intensity using FY-3 MWRI brightness temperature data. J. Trop. Meteor., 31, 87–94. (in Chinese) doi: 10.16032/j.issn.1004-4965.2015.01.010
|
Zhang, M., Q. F. Lu, S. Y. Gu, et al., 2019b: Analysis and correction of the difference between the ascending and descending orbits of the FY-3C microwave imager. J. Remote Sens., 23, 841–849. (in Chinese) doi: 10.11834/jrs.20198235
|
Zhang, S. J., L. S. Chen, and X. D. Xu, 2005: The diagnoses and numerical simulation on the unusual track of Helen (9505). Chinese J. Atmos. Sci., 29, 937–946. (in Chinese) doi: 10.3878/j.issn.1006-9895.2005.06.09
|
Zhao, Y. L., 2013: Retrieval algorithm of sea surface wind vectors for WindSat based on a simple forward model. Chinese J. Oceanol. Limn., 31, 210–218. doi: 10.1007/s00343-013-2079-1
|
Zhao, Y. L., and M. X. He, 2013: A simplified forward model of WindSat for sea surface wind vector retrieving. Period. Ocean Univ. China, 43, 98–105. (in Chinese) doi: 10.16441/j.cnki.hdxb.2013.12.016
|
Zhou, Y. Q., and J. H. Yu, 2015: Circulation characteristics of track variation anomaly of tropical cyclone in the northwestern Pacific. J. Meteor. Sci., 35, 720–727. (in Chinese)
|
Zhou, Z. H., X. L. Zou, and Z. K. Qin, 2017: Detection and analysis of television frequency interference from an FY-3C microwave radiation imager. J. Remote Sens., 21, 689–701. doi: 10.11834/jrs.20176364
|
Zhu, E. Z., L. Zhang, H. Q. Shi, et al., 2016: Accuracy of WindSat sea surface temperature: Comparison of buoy data from 2004 to 2013. J. Remote Sens., 20, 315–327. (in Chinese) doi: 10.11834/jrs.20165093
|
Zou, X. L., 2012: Introduction to microwave imager radiance observations from polar-orbiting meteorological satellites. Adv. Meteor. Sci. Technol., 2, 45–50. (in Chinese)
|
Zou, X. L., J. Zhao, F. Z. Weng, et al., 2012: Detection of radio-frequency interference signal over land from FY-3B Microwave Radiation Imager (MWRI). IEEE Trans. Geosci. Remote Sens., 50, 4994–5003. doi: 10.1109/TGRS.2012.2191792
|
Zou, X. L., J. Zhao, F. Z. Weng, et al., 2013: Detection of radio-frequency interference signal over land from FY-3B Microwave Radiation Imager (MWRI). Adv. Meteor. Sci. Tech-nol., 3, 144–153. (in Chinese)
|