Chen, L., T. Li, and Y. Q. Yu, 2015: Causes of strengthening and weakening of ENSO amplitude under global warming in four CMIP5 models. J. Climate, 28, 3250–3274. doi: 10.1175/jcli-d-14-00439.1
|
Chen, L., W. P. Zheng, and P. Braconnot, 2019: Towards understanding the suppressed ENSO activity during mid-Holocene in PMIP2 and PMIP3 simulations. Climate Dyn., 53, 1095–1110. doi: 10.1007/s00382-019-04637-z
|
Dai, Y. J., X. B. Zeng, R. E. Dickinson, et al., 2003: The Common Land Model. Bull. Amer. Meteor. Soc., 84, 1013–1024. doi: 10.1175/BAMS-84-8-1013
|
DeMott, C. A., C. Stan, D. A. Randall, et al., 2011: The Asian monsoon in the superparameterized CCSM and its relationship to tropical wave activity. J. Climate, 24, 5134–5156. doi: 10.1175/2011JCLI4202.1
|
Griffies, S. M., M. J. Harrison, P. C. Pacanowski, et al., 2004: A Technical Guide to MOM4. GFDL Ocean Group Technical Report No. 5, Princeton, NJ, NOAA/Geophysical Fluid Dy- namics Laboratory, 339 pp.
|
Huang, P., and R. H. Huang, 2011: Climatology and interannual variability of convectively coupled equatorial waves activity. J. Climate, 24, 4451–4465. doi: 10.1175/2011JCLI4021.1
|
Huang, P., C. Chou, and R. H. Huang, 2013: The activity of convectively coupled equatorial waves in CMIP3 global climate models. Theor. Appl. Climatol., 112, 697–711. doi: 10.1007/s00704-012-0761-4
|
|
Janicot, S., F. Mounier, S. Gervois, et al., 2010: The dynamics of the West African monsoon. Part V: The detection and role of the dominant modes of convectively coupled equatorial Rossby waves. J. Climate, 23, 4005–4024. doi: 10.1175/2010JCLI3221.1
|
Kawamura, R., T. Murakami, and B. Wang, 1996: Tropical and mid-latitude 45-day perturbations over the western Pacific during the northern summer. J. Meteor. Soc. Japan, 74, 867–890. doi: 10.2151/jmsj1965.74.6_867
|
Kiladis, G. N., M. C. Wheeler, P. T. Haertel, et al., 2009: Convectively coupled equatorial waves. Rev. Geophys., 47, RG2003. doi: 10.1029/2008rg000266
|
|
Li, G., and S.-P. Xie, 2014: Tropical biases in CMIP5 multimodel ensemble: The excessive equatorial Pacific cold tongue and double ITCZ problems. J. Climate, 27, 1765–1780. doi: 10.1175/JCLI-D-13-00337.1
|
Lin, J.-L., G. N. Kiladis, B. E. Mapes, et al., 2006: Tropical intraseasonal variability in 14 IPCC AR4 climate models. Part I: Convective signals. J. Climate, 19, 2665–2690. doi: 10.1175/JCLI3735.1
|
|
Matsuno, T., 1966: Quasi-geostrophic motions in the equatorial area. J. Meteor. Soc. Japan, 44, 25–43. doi: 10.2151/jmsj1965.44.1_25
|
Nordeng, T. E., 1994: Extended Versions of the Convective Para- meterization Scheme at ECMWF and Their Impact on the Mean and Transient Activity of the Model in the Tropics. Technical Memorandum 206, Reading, UK, ECMWF, 41 pp.
|
Oueslati, B., and G. Bellon, 2015: The double ITCZ bias in CMIP5 models: Interaction between SST, large-scale circulation and precipitation. Climate Dyn., 44, 585–607. doi: 10.1007/s00382-015-2468-6
|
Rayner, N. A., D. E. Parker, E. B. Horton, et al., 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. Atmos., 108, 4407. doi: 10.1029/2002JD002670
|
Rong, X. Y., J. Li, H. M. Chen, et al., 2018: The CAMS climate system model and a basic evaluation of its climatology and climate variability simulation. J. Meteor. Res., 32, 839–861. doi: 10.1007/s13351-018-8058-x
|
|
Roundy, P. E., C. J. Schreck III, and M. A. Janiga, 2009: Contributions of convectively coupled equatorial Rossby waves and Kelvin waves to the real-time multivariate MJO indices. Mon. Wea. Rev., 137, 469–478. doi: 10.1175/2008MWR2595.1
|
|
Straub, K. H., G. N. Kiladis, and P. E. Ciesielski, 2006: The role of equatorial waves in the onset of the South China Sea summer monsoon and the demise of El Niño during 1998. Dyn. Atmos. Oceans, 42, 216–238. doi: 10.1016/j.dynatmoce.2006.02.005
|
|
Ventrice, M. J., C. D. Thorncroft, and M. A. Janiga, 2012a: Atlantic tropical cyclogenesis: A three-way interaction between an African easterly wave, diurnally varying convection, and a convectively coupled atmospheric Kelvin wave. Mon. Wea. Rev., 140, 1108–1124. doi: 10.1175/MWR-D-11-00122.1
|
Ventrice, M. J., C. D. Thorncroft, and C. J. Schreck III, 2012b: Impacts of convectively coupled Kelvin waves on environmental conditions for Atlantic tropical cyclogenesis. Mon. Wea. Rev., 140, 2198–2214. doi: 10.1175/MWR-D-11-00305.1
|
Wang, L., and L. Chen, 2016: Interannual variation of convectively-coupled equatorial waves and their association with environmental factors. Dyn. Atmos. Oceans, 76, 116–126. doi: 10.1016/j.dynatmoce.2016.10.004
|
Wang, L., and L. Chen, 2017: Effect of basic state on seasonal variation of convectively coupled Rossby wave. Dyn. Atmos. Oceans, 77, 54–63. doi: 10.1016/j.dynatmoce.2016.11.002
|
Wang, L., and T. Li, 2017: Convectively coupled Kelvin waves in CMIP5 coupled climate models. Climate Dyn., 48, 767–781. doi: 10.1007/s00382-016-3109-4
|
|
|
Yang, G.-Y., B. Hoskins, and J. Slingo, 2007: Convectively coupled equatorial waves. Part I: Horizontal and vertical structures. J. Atmos. Sci., 64, 3406–3423. doi: 10.1175/JAS4017.1
|
Zhang, X. X., H. L. Liu, and M. H. Zhang, 2015: Double ITCZ in coupled ocean–atmosphere models: From CMIP3 to CMIP5. Geophys. Res. Lett., 42, 8651–8659. doi: 10.1002/2015GL065973
|