Impact of Tropospheric Ozone on Summer Climate in China

+ Author Affiliations + Find other works by these authors
Funds: 
Supported by the National Key Research and Development Plan of China (2016YFC0203303), National (Key) Basic Research and Development (973) Program of China (2014CB441203), National Natural Science Foundation of China (91544230, 41621005, 41575145, and 41205109), and REgional climate–air QUAlity interactions (REQUA) project of Marie Curie Actions International Research Staff Exchange Scheme (IRSES) under the 7th Framework Programme of the European Community (PIRSES-GA-2013-612671)

PDF

  • The spatial distribution, radiative forcing, and climatic effects of tropospheric ozone in China during summer were investigated by using the regional climate model RegCM4. The results revealed that the tropospheric ozone column concentration was high in East China, Central China, North China, and the Sichuan basin during summer. The increase in tropospheric ozone levels since the industrialization era produced clear-sky shortwave and clear-sky longwave radiative forcing of 0.18 and 0.71 W m–2, respectively, which increased the average surface air temperature by 0.06 K and the average precipitation by 0.22 mm day–1 over eastern China during summer. In addition, tropospheric ozone increased the land–sea thermal contrast, leading to an enhancement of East Asian summer monsoon circulation over southern China and a weakening over northern China. The notable increase in surface air temperature in northwestern China, East China, and North China could be attributed to the absorption of longwave radiation by ozone, negative cloud amount anomaly, and corresponding positive shortwave radiation anomaly. There was a substantial increase in precipitation in the middle and lower reaches of the Yangtze River. It was related to the enhanced upward motion and the increased water vapor brought by strengthened southerly winds in the lower troposphere.
  • Fig.  1.   Summer (June–August) mean column concentration (DU) of tropospheric ozone from (a) observations and (b) simulations (present-day) (2005–10). The observation data are from Aura OMI/MLS (Ziemke et al., 2006).

    Fig.  2.   Summer (June–August) mean clear-sky (a) shortwave and (b) longwave radiative forcings, and all-sky (c) shortwave and (d) longwave radiative forcings (W m–2) at the tropopause due to tropospheric ozone. The red contour lines represent the total cloud amount (%).

    Fig.  3.   Summer (June–August) mean net (a) shortwave and (b) longwave radiative flux changes (W m–2) at the tropopause, and (c) total cloud amount change (%) due to tropospheric ozone. Dotted areas denote results passing the t-test at the 90% confidence level (hereinafter inclusive).

    Fig.  4.   Summer (June–August) mean surface air temperature change (K) due to tropospheric ozone.

    Fig.  5.   Summer (June–August) (a, b, c) mean geopotential height field (shaded; gpm) and wind vector (arrow; m s–1), and (d, e, f) their changes at (a, d) 925 hPa, (b, e) 850 hPa, and (c, f) 500 hPa due to tropospheric ozone.

    Fig.  6.   Summer (June–August) (a) mean zonally averaged (108°–122°E) vertical wind stream and air temperature (shaded; K), and (b) their changes due to tropospheric ozone.

    Fig.  7.   (a) Changes in summer (June–August) mean precipitation (mm day–1) and (b) zonally averaged (108°–122°E) specific humidity (g kg–1) due to tropospheric ozone.

    Table  1   Radiative forcing (W m–2) due to increased tropospheric ozone from this study and previous studies

    Clear-sky shortwave
    radiative forcing at
    the tropopause
    Clear-sky longwave
    radiative forcing at
    the tropopause
    Clear-sky total
    radiative forcing
    at the tropopause
    All-sky shortwave
    radiative forcing
    at the tropopause
    All-sky longwave
    radiative forcing
    at the tropopause
    All-sky total
    radiative forcing
    at the tropopause
    Southern China 0.18 0.71 0.89 0.47 0.48 0.95
    Northern China 0.18 0.71 0.89 0.41 0.44 0.85
    Eastern China 0.18 0.71 0.89 0.44 0.46 0.90
    Whole domain 0.14 0.54 0.68 0.28 0.41 0.69
    IPCC (2013) 0.40 ± 0.20
    (global, annual)
    Skeie et al. (2011) 0.44 ± 0.13
    (global, annual)
    Søvde et al. (2011) 0.38 (global, annual)
    Stevenson et al.
    (2013)
    0.08 ± 0.02
    (global, annual)
    0.33 ± 0.09
    (global, annual)
    0.41 ± 0.20
    (global, annual)
    Chang et al.
    (2009)
    0.58 (global, JJA)
    1.16 (eastern China, JJA)
    Wang et al. (2005) 0.19 (China, July) 0.49 (China, July) 0.68 (China, July)
    Download: Download as CSV

    Table  2   Effects of tropospheric ozone on regional climate

    Southern China Northern China Eastern China Whole modeling domain
    All-sky shortwave radiative flux (W m–2) 0.58 0.63 0.61 0.35
    All-sky longwave radiative flux (W m–2) 1.18 0.64 0.90 0.76
    Clear-sky shortwave radiative flux (W m–2) 0.25 0.19 0.22 0.19
    Clear-sky longwave radiative flux (W m–2) 1.31 1.21 1.26 0.96
    Cloud amount (%) 0.04 –0.30 –0.13 –0.01
    Surface air temperature (K) 0.07 0.05 0.06 0.03
    Zonal wind (m s–1) 0.05 –0.05 0.0004 0.013
    Meridional wind (m s–1) 0.04 –0.04 0.0008 0.002
    Total precipitation (mm day–1) 0.49 (2.7%) –0.05 (–0.3%) 0.22 (1.2%) 0.08 (0.5%)
    Large-scale precipitation (mm day–1) 0.14 (5.3%) 0.24 (4.0%) 0.19 (4.3%) 0.04 (1.5%)
    Convection precipitation (mm day–1) 0.35 (2.2%) –0.29 (–2.5%) 0.03 (0.2%) 0.04 (0.3%)
    Download: Download as CSV
  • Amann, M., Z. Klimont, and F. Wagner, 2013: Regional and glo-bal emissions of air pollutants: Recent trends and future scenarios. Annu. Rev. Environ. Resour., 38, 31–55. doi: 10.1146/annurev-environ-052912-173303
    Beig, G., and V. Singh, 2007: Trends in tropical tropospheric column ozone from satellite data and MOZART model. Geophys. Res. Lett., 34, L17801. doi: 10.1029/2007GL030460
    Chang, W. Y., H. Liao, and H. J. Wang, 2009: Climate responses to direct radiative forcing of anthropogenic aerosols, tropospheric ozone, and long-lived greenhouse gases in eastern China over 1951–2000. Adv. Atmos. Sci., 26, 748–762. doi: 10.1007/s00376-009-9032-4
    Chen, X., F. X. Huang, X. Q. Xia, et al., 2015: Analysis of tropospheric ozone long-term changing trends and affecting factors over northern China. Chinese Sci. Bull., 60, 2659–2666. (in Chinese) doi: 10.1360/N972015-00155
    Cionni, I., V. Eyring, J. F. Lamarque, et al., 2011: Ozone database in support of CMIP5 simulations: Results and corresponding radiative forcing. Atmos. Chem. Phys., 11, 11267–11292. doi: 10.5194/acp-11-11267-2011
    Dee, D. P., S. M. Uppala, A. J. Simmons, et al., 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553–597. doi: 10.1002/qj.828
    Ding, A. J., T. Wang, V. Thouret, et al., 2008: Tropospheric ozone climatology over Beijing: Analysis of aircraft data from the MOZAIC program. Atmos. Chem. Phys., 8, 1–13. doi: 10.5194/acp-8-1-2008
    Emanuel, K. A., 1991: A scheme for representing cumulus convection in large-scale models. J. Atmos. Sci., 48, 2313–2335. doi: 10.1175/1520-0469(1991)048
    Emanuel, K. A., and M. ŽIvković-Rothman, 1999: Development and evaluation of a convection scheme for use in climate models. J. Atmos. Sci., 56, 1766–1782. doi: 10.1175/1520-0469(1999)056
    Giorgi, F., E. Coppola, F. Solmon, et al., 2012: RegCM4: Model description and preliminary tests over multiple CORDEX domains. Climate Res., 52, 7–29. doi: 10.3354/cr01018
    Höglund-Isaksson, L., 2012: Global anthropogenic methane emissions 2005–2030: Technical mitigation potentials and costs. Atmos. Chem. Phys., 12, 9079–9096. doi: 10.5194/acp-12-9079-2012
    Holtslag, A. A. M., E. I. F. De Bruijn, and H. L. Pan, 1990: A high resolution air mass transformation model for short-range weather forecasting. Mon. Wea. Rev., 118, 1561–1575. doi: 10.1175/1520-0493(1990)118
    Hou, X. W., B. Zhu, D. D. Fei, et al., 2016: Simulation of tropical tropospheric ozone variation from 1982 to 2010: The meteorological impact of two types of ENSO event. J. Geophys. Res. Atmos., 121, 9220–9236. doi: 10.1002/2016JD024945
    IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, T. F. Stocker, D. Qin, G. K. Plattner, et al., Eds., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp.
    Kalnay, E., M. Kanamitsu, R. Kistler, et al., 1996: The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 77, 437–472. doi: 10.1175/1520-0477(1996)077
    Klimont, Z., S. J. Smith, and J. Cofala, 2013: The last decade of global anthropogenic sulfur dioxide: 2000–2011 emissions. Environ. Res. Lett., 8, 014003. doi: 10.1088/1748-9326/8/1/014003
    Li, X. Q., M. F. Ting, C. H. Li, et al., 2015: Mechanisms of Asian summer monsoon changes in response to anthropogenic forcing in CMIP5 models. J. Climate, 28, 4107–4125. doi: 10.1175/JCLI-D-14-00559.1
    Li, S., T. J. Wang, F. Solmon, et al., 2016: Impact of aerosols on regional climate in southern and northern China during strong/weak East Asian summer monsoon years. J. Geophys. Res. Atmos., 121, 4069–4081. doi: 10.1002/2015JD023892
    Menon, S., J. Hansen, L. Nazarenko, et al., 2002: Climate effects of black carbon aerosols in China and India. Science, 297, 2250–2253. doi: 10.1126/science.1075159
    Mlawer, E. J., S. J. Taubman, P. D. Brown, et al., 1997: Radiative transfer for inhomogeneous atmospheres: TMRR, a validated correlated-k model for the longwave. J. Geophys. Res. Atmos., 102, 16663–16682. doi: 10.1029/97jd00237
    Pal, J. S., E. E. Small, and E. A. B. Eltahir, 2000: Simulation of regional-scale water and energy budgets: Representation of subgrid cloud and precipitation processes within RegCM. J. Geophys. Res. Atmos., 105, 29579–29594. doi: 10.1029/2000jd900415
    Reynolds, R. W., N. A. Rayner, T. M. Smith, et al., 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15, 1609–1625. doi: 10.1175/1520-0442(2002)015
    Shalaby, A., A. S. Zakey, A. B. Tawfik, et al., 2012: Implementation and evaluation of online gas-phase chemistry within a regional climate model (RegCM-CHEM4). Geosci. Model Dev., 5, 741–760. doi: 10.5194/gmd-5-741-2012
    Shindell, D., G. Faluvegi, A. Lacis, et al., 2006: Role of tropospheric ozone increases in 20th-century climate change. J. Geophys. Res. Atmos., 111, D08302. doi: 10.1029/2005JD006348
    Shindell, D. T., A. Voulgarakis, G. Faluvegi, et al., 2012: Precipitation response to regional radiative forcing. Atmos. Chem. Phys., 12, 6969–6982. doi: 10.5194/acp-12-6969-2012
    Skeie, R. B., T. K. Berntsen, G. Myhre, et al., 2011: Anthropogenic radiative forcing time series from pre-industrial times until 2010. Atmos. Chem. Phys., 11, 11827–11857. doi: 10.5194/acp-11-11827-2011
    Solmon, F., F. Giorgi, and C. Liousse, 2006: Aerosol modelling for regional climate studies: Application to anthropogenic particles and evaluation over a European/African domain. Tellus B, 58, 51–72. doi: 10.1111/j.1600-0889.2005.00155.x
    Solmon, F., M. Mallet, N. Elguindi, et al., 2008: Dust aerosol impact on regional precipitation over western Africa, mechanisms and sensitivity to absorption properties. Geophys. Res. Lett., 35, L24705. doi: 10.1029/2008GL035900
    Song, F. F., T. J. Zhou, and Y. Qian, 2014: Responses of East As-ian summer monsoon to natural and anthropogenic forcings in the 17 latest CMIP5 models. Geophys. Res. Lett., 41, 596–603. doi: 10.1002/2013GL058705
    Søvde, O. A., C. R. Hoyle, G. Myhre, et al., 2011: The HNO3 forming branch of the HO2 + NO reaction: Pre-industrial-to-present trends in atmospheric species and radiative forcings. Atmos. Chem. Phys., 11, 8929–8943. doi: 10.5194/acp-11-8929-2011
    Stevenson, D. S., P. J. Young, V. Naik, et al., 2013: Tropospheric ozone changes, radiative forcing and attribution to emissions in the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). Atmos. Chem. Phys., 13, 3063–3085. doi: 10.5194/acp-13-3063-2013
    Stohl, A., Z. Klimont, S. Eckhardt, et al., 2013: Black carbon in the Arctic: The underestimated role of gas flaring and residential combustion emissions. Atmos. Chem. Phys., 13, 8833–8855. doi: 10.5194/acp-13-8833-2013
    Stohl, A., B. Aamaas, M. Amann, et al., 2015: Evaluating the climate and air quality impacts of short-lived pollutants. Atmos. Chem. Phys., 15, 10529–10566. doi: 10.5194/acp-15-10529-2015
    Wang, T. J., M. Xie, L. J. Gao, et al., 2004: Development and preliminary application of a coupled regional climate–chemistry model system. J. Nanjing Univ. (Nat. Sci.), 40, 711–727. (in Chinese) doi: 10.3321/j.issn:0469-5097.2004.06.007
    Wang, T., X. L. Wei, A. J. Ding, et al., 2009: Increasing surface ozone concentrations in the background atmosphere of southern China, 1994–2007. Atmos. Chem. Phys., 9, 6217–6227. doi: 10.5194/acp-9-6217-2009
    Wang, W. G., J. Wu, H. N. Liu, et al., 2005: Researches on the influence of pollution emission on tropospheric ozone variation and radiation over China and its adjacent area. Chinese J. Atmos. Sci., 29, 734–746. (in Chinese) doi: 10.3878/j.issn.1006-9895.2005.05.07
    Wang, Y., P. Konopka, Y. Liu, et al., 2012: Tropospheric ozone trend over Beijing from 2002–2010: Ozonesonde measurements and modeling analysis. Atmos. Chem. Phys., 12, 8389–8399. doi: 10.5194/acp-12-8389-2012
    Wu, J., W. M. Jiang, H. N. Liu, et al., 2003: The influence of increasing ozone in troposphere on air temperature in China. Plateau Meteor., 22, 132–142. (in Chinese) doi: 10.3321/j.issn:1000-0534.2003.02.006
    Wu, P. L., N. Christidis, and P. Stott, 2013: Anthropogenic impact on earth’s hydrological cycle. Nat. Climate Change, 3, 807–810. doi: 10.1038/nclimate1932
    Xie, B., H. Zhang, Z. L. Wang, et al., 2016: A modeling study of effective radiative forcing and climate response due to tropospheric ozone. Adv. Atmos. Sci., 33, 819–828. doi: 10.1007/s00376-016-5193-0
    Zakey, A. S., F. Solmon, and F. Giorgi, 2006: Implementation and testing of a desert dust module in a regional climate model. Atmos. Chem. Phys., 6, 4687–4704. doi: 10.5194/acp-6-4687-2006
    Zakey, A. S., F. Giorgi, and X. Bi, 2008: Modeling of sea salt in a regional climate model: Fluxes and radiative forcing. J. Geophys. Res. Atmos., 113, D14221. doi: 10.1029/2007JD009209
    Zhang, L., and T. Li, 2016: Relative roles of anthropogenic aerosols and greenhouse gases in land and oceanic monsoon changes during past 156 years in CMIP5 models. Geophys. Res. Lett., 43, 5295–5301. doi: 10.1002/2016GL069282
    Zhou, Y., J. Jiang, A. N. Huang, et al., 2013: Possible contribution of heavy pollution to the decadal change of rainfall over eastern China during the summer monsoon season. Environ. Res. Lett., 8, 044024. doi: 10.1088/1748-9326/8/4/044024
    Ziemke, J. R., S. Chandra, B. N. Duncan, et al., 2006: Tropospheric ozone determined from Aura OMI and MLS: Evaluation of measurements and comparison with the Global Modeling Initiative’s Chemical Transport Model. J. Geophys. Res. Atmos., 111, D19303. doi: 10.1029/2006JD007089
    Ziemke, J. R., S. Chandra, G. J. Labow, et al., 2011: A global climatology of tropospheric and stratospheric ozone derived from Aura OMI and MLS measurements. Atmos. Chem. Phys., 11, 9237–9251. doi: 10.5194/acp-11-9237-2011
  • Related Articles

  • Cited by

    Periodical cited type(23)

    1. Ning Yang, Xiaohai Zou, Luyao Sun, et al. The non-uniformity characteristics of the evaporation duct in the South China Sea based on CLDAS data. Frontiers in Marine Science, 2024, 10 DOI:10.3389/fmars.2023.1326975
    2. Yingxue Cui, Tong Hu, Ke Qi, et al. Research on Optimization Method of Evaporation Duct Prediction Model. Mathematics, 2024, 12(2): 205. DOI:10.3390/math12020205
    3. Qi Zhang, Shuwen Wang, Yang Shi, et al. Measurements and Analysis of Maritime Wireless Channel at 8 GHz in the South China Sea Region. IEEE Transactions on Antennas and Propagation, 2023, 71(3): 2674. DOI:10.1109/TAP.2022.3209664
    4. Shuwen Wang, Kunde Yang, Yang Shi, et al. Long-term over-the-horizon microwave channel measurements and statistical analysis in evaporation ducts over the Yellow Sea. Frontiers in Marine Science, 2023, 10 DOI:10.3389/fmars.2023.1077470
    5. Ning Yang, Debin Su, Tao Wang. Atmospheric Ducts and Their Electromagnetic Propagation Characteristics in the Northwestern South China Sea. Remote Sensing, 2023, 15(13): 3317. DOI:10.3390/rs15133317
    6. Shuwen Wang, Kunde Yang, Yang Shi, et al. Prediction of Over-the-Horizon Electromagnetic Wave Propagation in Evaporation Ducts Based on the Gated Recurrent Unit Network Model. IEEE Transactions on Antennas and Propagation, 2023, 71(4): 3485. DOI:10.1109/TAP.2023.3240998
    7. Shuwen Wang, Kunde Yang, Yang Shi, et al. Impact of Evaporation Duct on Electromagnetic Wave Propagation During a Typhoon. Journal of Ocean University of China, 2022, 21(5): 1069. DOI:10.1007/s11802-022-4967-5
    8. Lang Huang, Xiaofeng Zhao, Yudi Liu, et al. The Diurnal Variation of the Evaporation Duct Height and Its Relationship With Environmental Variables in the South China Sea. IEEE Transactions on Antennas and Propagation, 2022, 70(11): 10865. DOI:10.1109/TAP.2022.3191160
    9. Cheng Yang, Jian Wang, Yafei Shi. A Multi-Dimensional Deep-Learning-Based Evaporation Duct Height Prediction Model Derived from MAGIC Data. Remote Sensing, 2022, 14(21): 5484. DOI:10.3390/rs14215484
    10. Jianguo Ma, Jian Wang, Cheng Yang. Long-Range Microwave Links Guided by Evaporation Ducts. IEEE Communications Magazine, 2022, 60(5): 68. DOI:10.1109/MCOM.002.00508
    11. Khurram Shabih Zaidi, Sadaf Hina, Muhammad Jawad, et al. Beyond the Horizon, Backhaul Connectivity for Offshore IoT Devices. Energies, 2021, 14(21): 6918. DOI:10.3390/en14216918
    12. Yinhe Cheng, Mengling Zha, Zhiwei You, et al. Duct climatology over the South China Sea based on European Center for Medium Range Weather Forecast reanalysis data. Journal of Atmospheric and Solar-Terrestrial Physics, 2021, 222: 105720. DOI:10.1016/j.jastp.2021.105720
    13. Fei Hong, Qi Zhang. Time Series Analysis of Evaporation Duct Height over South China Sea: A Stochastic Modeling Approach. Atmosphere, 2021, 12(12): 1663. DOI:10.3390/atmos12121663
    14. Bin Tian, Qianqian Liu, Jun Lu, et al. The influence of seasonal and nonreciprocal evaporation duct on electromagnetic wave propagation in the Gulf of Aden. Results in Physics, 2020, 18: 103181. DOI:10.1016/j.rinp.2020.103181
    15. Yang Shi, Qi Zhang, Shuwen Wang, et al. A Comprehensive Study on Maximum Wavelength of Electromagnetic Propagation in Different Evaporation Ducts. IEEE Access, 2019, 7: 82308. DOI:10.1109/ACCESS.2019.2923039
    16. Qi Zhang, Kunde Yang. Study on evaporation duct estimation from point‐to‐point propagation measurements. IET Science, Measurement & Technology, 2018, 12(4): 456. DOI:10.1049/iet-smt.2017.0342
    17. Khurram Shabih Zaidi, Varun Jeoti, Micheal Drieberg, et al. Fading Characteristics in Evaporation Duct: Fade Margin for a Wireless Link in the South China Sea. IEEE Access, 2018, 6: 11038. DOI:10.1109/ACCESS.2018.2810299
    18. Xidang Yan, Kunde Yang, Yuanliang Ma. Calculation Method for Evaporation Duct Profiles Based on Artificial Neural Network. IEEE Antennas and Wireless Propagation Letters, 2018, 17(12): 2274. DOI:10.1109/LAWP.2018.2873110
    19. Qi Zhang, Kunde Yang, Qiulong Yang. Statistical Analysis of the Quantified Relationship between Evaporation Duct and Oceanic Evaporation for Unstable Conditions. Journal of Atmospheric and Oceanic Technology, 2017, 34(11): 2489. DOI:10.1175/JTECH-D-17-0156.1
    20. Kunde Yang, Qi Zhang, Yang Shi. Interannual variability of the evaporation duct over the South China Sea and its relations with regional evaporation. Journal of Geophysical Research: Oceans, 2017, 122(8): 6698. DOI:10.1002/2017JC012683
    21. Qi Zhang, Kunde Yang, Yang Shi. Spatial and temporal variability of the evaporation duct in the Gulf of Aden. Tellus A: Dynamic Meteorology and Oceanography, 2016, 68(1): 29792. DOI:10.3402/tellusa.v68.29792
    22. Khurram Shabih Zaidi, Varun Jeoti, Micheal Drieberg, et al. Long-range mobile communication over sea utilizing evaporation duct. 2017 Progress in Electromagnetics Research Symposium - Fall (PIERS - FALL), DOI:10.1109/PIERS-FALL.2017.8293252
    23. Shuai Zhao, Meng Zhang, Qingjian Ni, et al. A Short-term Evaporation Duct Height Prediction Method Using EMD and Parameter Optimized SVR. 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC), DOI:10.1109/SMC42975.2020.9283040

    Other cited types(0)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return