Comparison of Submicron Particles at a Rural and an Urban Site in the North China Plain during the December 2016 Heavy Pollution Episodes

+ Author Affiliations + Find other works by these authors
Funds: 
Supported by the National Key Project of Ministry of Science and Technology of China (2016YFC0203306 and 2016YFC0203305) and Chinese Academy of Meteorological Sciences Basic Research Fund (2017Z011, 2016Z001, and 2016Y004)

PDF

  • An extensive field experiment for measurement of physical and chemical properties of aerosols was conducted at an urban site in the Chinese Academy of Meteorological Sciences (CAMS) in Beijing and at a rural site in Gucheng (GC), Hebei Province in December 2016. This paper compares the number size distribution of submicron particle matter (PM1, diameter < 1 μm) between the two sites. The results show that the mean PM1 number concentration at GC was twice that at CAMS, and the mass concentration was three times the amount at CAMS. It is found that the accumulation mode (100–850 nm) particles constituted the largest fraction of PM1 at GC, which was significantly correlated with the local coal combustion, as confirmed by a significant relationship between the accumulation mode and the absorption coefficient of soot particles. The high PM1 concentration at GC prevented the occurrence of new particle formation (NPF) events, while eight such events were observed at CAMS. During the NPF events, the mass fraction of sulfate increased significantly, indicating that sulfate played an important role in NPF. The contribution of regional transport to PM1 mass concentration was approximately 50% at both sites, same as that of the local emission. However, during the red-alert period when emission control took place, the contribution of regional transport was notably higher.
  • Fig.  1.   Location of the measurement sites: (a) CAMS in Beijing city and GC in Hebei Province and (b) the national roads as well as highways in this region. The map is from Google Earth.

    Fig.  2.   (a, b) Wind speed and wind direction, and (c, d) air temperature (Temp; dashed line) and relative humidity (RH; solid line) at (a, c) the CAMS site and (b, d) the GC site in December 2016. The color of dots in (a, b) indicates the wind direction from 0 to 360 degree.

    Fig.  3.   Particle number size distribution (PNSD) at (a) CAMS and (b) GC in December 2016. The purple line indicates the geometric mean diameter of PNSD at each site.

    Fig.  4.   Time series of hourly mean PM1 mass concentration calculated based on PNSD at CAMS (dashed line) and GC (solid line), respectively.

    Fig.  5.   Comparison of mean PNSD between CAMS and GC. The bars indicate standard deviation.

    Fig.  6.   Hourly mean number concentration of different modes: (a) nucleation mode, (b) Aitken mode, (c) accumulation mode, and (d) total particles at CAMS (dashed line) and GC (solid line).

    Fig.  7.   Diurnal patterns of hourly mean number concentration (N, cm–3) of (a) nucleation mode, (b) Aitken mode, and (c) accumulation mode at CAMS (dashed line, left axis) and GC (solid line, right axis).

    Fig.  8.   Comparison of absorption coefficient (σabs, 637) vs. number concentration of (a) Aitken mode and (b) accumulation mode particles.

    Fig.  9.   An NPF case with a long-lasting growth process that occurred at 1200 BT during 8–13 December 2016 at CAMS. (a) PNSD evolution, (b) number concentration of each mode, and (c) calculated PM1 mass concentration. The purple dots in (a) indicates the geometric mean dia-meter of PNSD.

    Fig.  10.   72-h back trajectories arriving at CAMS during 8–13 December. The red, black, and blue lines represent the trajectories on 8–10, 11, and 12–13 December, respectively.

    Fig.  11.   Mass fraction of the chemical species of the non-refractory submicron particles, including organics, sulfate, nitrate, and ammonium on the left axis and nucleation mode concentration on the right axis. The dashed-line gray boxes indicate the NPF events.

    Fig.  12.   Hourly mean value of PM1 during 8–21 December at CAMS and GC, respectively. The daily minima were chosen as the baseline for case 1 and case 2, marked by lower dashed lines.

    Table  1   Modal fitting results of the mean particle number size distribution at CAMS and GC during the experiment. Dp, g, i is the mode geometric mean diameter, σg, i is the mode variance, Ni is the mode number concentration, and i is the mode number

    Mode 1 Mode 2
    Dp, g, 1 (nm) σg, 1 N1 (cm–3) Dp, g, 2 (nm) σg, 2 N2 (cm–3)
    CAMS 61±38 2.00±0.70 12,500±4330 310±60 1.63±0.33 1530±4330
    GC 120±32 1.97±0.10 25,810±10,190 320±29 1.80±0.34 1180±2150
    Download: Download as CSV
  • Birmili, W., L. Tomsche, A. Sonntag, et al., 2013: Variability of aerosol particles in the urban atmosphere of Dresden (Germany): Effects of spatial scale and particle size. Meteor. Z., 22, 195–211. doi: 10.1127/0941-2948/2013/0395
    Cheng, Y. F., H. Su, D. Rose, et al., 2012: Size-resolved measurement of the mixing state of soot in the megacity Beijing, China: Diurnal cycle, aging and parameterization. Atmos. Chem. Phys., 12, 4477–4491. doi: 10.5194/acp-12-4477-2012
    Cohen, J. B., 2014: Quantifying the occurrence and magnitude of the Southeast Asian fire climatology. Environ. Res. Lett., 9, 114018. doi: 10.1088/1748-9326/9/11/114018
    Cohen, J. B., and C. Wang, 2014: Estimating global black carbon emissions using a top-down Kalman filter approach. J. Geophys. Res., 119, 307–323. doi: 10.1002/2013JD019912
    Dal Maso, M., M. Kulmala, I. Riipinen, et al., 2005: Formation and growth of fresh atmospheric aerosol: Eight years of aerosol size distribution data from SMEAR II, Hyytiälä, Finland. Boreal Environ. Res., 10, 323–336.
    Fuks, N. A., and A. G. Sutugin, 1970: Highly Dispersed Aerosols. Ann Arbor Science Publishers, Ann Arbor, London, 47–60.
    Gunthe, S. S., D. Rose, H. Su, et al., 2011: Cloud condensation nuclei (CCN) from fresh and aged air pollution in the megacity region of Beijing. Atmos. Chem. Phys., 11, 11023–11039. doi: 10.5194/acp-11-11023-2011
    Guo, S., M. Hu, M. L. Zamora, et al., 2014: Elucidating severe urban haze formation in China. Proc. Natl. Acad. Sci. USA, 111, 17373–17378. doi: 10.1073/pnas.1419604111
    Hussein, T., M. Dal Maso, T. Petäjä, et al., 2005: Evaluation of an automatic algorithm for fitting the particle number size distributions. Boreal Environ. Res., 10, 337–355.
    Jia, Y. T., K. A. Rahn, K. B. He, et al., 2008: A novel technique for quantifying the regional component of urban aerosol solely from its sawtooth cycles. J. Geophys. Res., 113, D21309. doi: 10.1029/2008JD010389
    Kivekäs, N., J. Sun, M. Zhan, et al., 2009: Long term particle size distribution measurements at Mount Waliguan, a high-altitude site in inland China. Atmos. Chem. Phys., 9, 5461–5474. doi: 10.5194/acp-9-5461-2009
    Kulmala, M., M. Dal Maso, J. M. Mäkelä, et al., 2001: On the formation, growth and composition of nucleation mode particles. Tellus B, 53, 479–490. doi: 10.3402/tellusb.v53i4.16622
    Kulmala, M., H. Vehkamäki, T. Petäjä, et al., 2004: Formation and growth rates of ultrafine atmospheric particles: A review of observations. J. Aeros. Sci., 35, 143–176. doi: 10.1016/j.jaerosci.2003.10.003
    Kulmala, M., T. Petäjä, T. Nieminen, et al., 2012: Measurement of the nucleation of atmospheric aerosol particles. Nat. Protoc., 7, 1651–1667. doi: 10.1038/nprot.2012.091
    Kumar, P., L. Morawska, W. Birmili, et al., 2014: Ultrafine particles in cities. Environ. Int., 66, 1–10. doi: 10.1016/j.envint.2014.01.013
    Li, K., H. Liao, Y. H. Mao, et al., 2016: Source sector and region contributions to concentration and direct radiative forcing of black carbon in China. Atmos. Environ., 124, 351–366. doi: 10.1016/j.atmosenv.2015.06.014
    Ma, N., and W. Birmili, 2015: Estimating the contribution of photochemical particle formation to ultrafine particle number averages in an urban atmosphere. Sci. Total Environ., 512–513, 154–166. doi: 10.1016/j.scitotenv.2015.01.009
    Müller, T., J. S. Henzing, G. de Leeuw, et al., 2011: Characterization and intercomparison of aerosol absorption photometers: Result of two intercomparison workshops. Atmos. Meas. Tech., 4, 245–268. doi: 10.5194/amt-4-245-2011
    Peng, J. F., M. Hu, Z. B. Wang, et al., 2014: Submicron aerosols at thirteen diversified sites in China: Size distribution, new particle formation and corresponding contribution to cloud condensation nuclei production. Atmos. Chem. Phys., 14, 10249–10265. doi: 10.5194/acp-14-10249-2014
    Pfeifer, S., W. Birmili, A. Schladitz, et al., 2014: A fast and easy-to-implement inversion algorithm for mobility particle size spectrometers considering particle number size distribution information outside of the detection range. Atmos. Meas. Tech., 7, 95–105. doi: 10.5194/amt-7-95-2014
    Qi, X. M., A. J. Ding, W. Nie, et al., 2015: Aerosol size distribution and new particle formation in the western Yangtze River Delta of China: 2 years of measurements at the SORPES station. Atmos. Chem. Phys., 15, 12445–12464. doi: 10.5194/acp-15-12445-2015
    Shen, X. J., J. Y. Sun, Y. M. Zhang, et al., 2011: First long-term study of particle number size distributions and new particle formation events of regional aerosol in the North China Plain. Atmos. Chem. Phys., 11, 1565–1580. doi: 10.5194/acp-11-1565-2011
    Shen, X. J., J. Y. Sun, X. Y. Zhang, et al., 2016a: Particle climatology in central East China retrieved from measurements in planetary boundary layer and in free troposphere at a 1500-m-high mountaintop site. Aerosol Air Qual. Res., 16, 689–701. doi: 10.4209/aaqr.2015.02.0070
    Shen, X. J., J. Y. Sun, X. Y. Zhang, et al., 2016b: Key features of new particle formation events at background sites in China and their influence on cloud condensation nuclei. Front. Environ. Sci. Eng., 10, 5. doi: 10.1007/s11783-016-0833-2
    Sun, J. Y., Q. Zhang, M. R. Canagaratna, et al., 2010: Highly time- and size-resolved characterization of submicron aerosol particles in Beijing using an aerodyne aerosol mass spectrometer. Atmos. Environ., 44, 131–140. doi: 10.1016/j.atmosenv.2009.03.020
    Vu, T. V., J. M. Delgado-Saborit, and R. M. Harrison, 2015: Review: Particle number size distributions from seven major sources and implications for source apportionment studies. Atmos. Environ., 122, 114–132. doi: 10.1016/j.atmosenv.2015.09.027
    Wang, Y. Q., X. Y. Zhang, and R. R. Draxler, 2009: TrajStat: GIS-based software that uses various trajectory statistical analysis methods to identify potential sources from long-term air pollution measurement data. Environ. Modell. Softw., 24, 938–939. doi: 10.1016/j.envsoft.2009.01.004
    Wang, Z. B., M. Hu, D. L. Yue, et al., 2011: Evaluation on the role of sulfuric acid in the mechanisms of new particle formation for Beijing case. Atmos. Chem. Phys., 11, 12663–12671. doi: 10.5194/acp-11-12663-2011
    Wang, Z. B., M. Hu, J. Y. Sun, et al., 2013: Characteristics of regional new particle formation in urban and regional background environments in the North China Plain. Atmos. Chem. Phys., 13, 12495–12506. doi: 10.5194/acp-13-12495-2013
    Wang, H. L., B. Zhu, L. J. Shen, et al., 2014: Number size distribution of aerosols at Mt. Huang and Nanjing in the Yangtze River Delta, China: Effects of air masses and characteristics of new particle formation. Atmos. Res., 150, 42–56. doi: 10.1016/j.atmosres.2014.07.020
    Wang, Y. S., L. Yao, L. L. Wang, et al., 2014: Mechanism for the formation of the January 2013 heavy haze pollution episode over central and eastern China. Sci. China Earth Sci., 57, 14–25. doi: 10.1007/s11430-013-4773-4
    Wang, Z. F., J. Li, Z. Wang, et al., 2014: Modeling study of regional severe hazes over mid–eastern China in January 2013 and its implications on pollution prevention and control. Sci. China Earth Sci., 57, 3–13. doi: 10.1007/s11430-013-4793-0
    Wiedensohler, A., W. Birmili, A. Nowak, et al., 2012: Mobility particle size spectrometers: Harmonization of technical standards and data structure to facilitate high quality long-term observations of atmospheric particle number size distributions. Atmos. Meas. Tech., 5, 657–685. doi: 10.5194/amt-5-657-2012
    Wu, Z. J., M. Hu, S. Liu, et al., 2007: New particle formation in Beijing, China: Statistical analysis of a 1-year data set. J. Geophys. Res., 112, D09209. doi: 10.1029/2006jd007406
    Wu, Z. J., M. Hu, P. Lin, et al., 2008: Particle number size distribution in the urban atmosphere of Beijing, China. Atmos. Environ., 42, 7967–7980. doi: 10.1016/j.atmosenv.2008.06.022
    Yue, D. L., M. Hu, R. Y. Zhang, et al., 2011: Potential contribution of new particle formation to cloud condensation nuclei in Beijing. Atmos. Environ., 45, 6070–6077. doi: 10.1016/j.atmosenv.2011.07.037
    Zhang, R. H., Q. Li, and R. N. Zhang, 2014: Meteorological conditions for the persistent severe fog and haze event over eastern China in January 2013. Sci. China Earth Sci., 57, 26–35. doi: 10.1007/s11430-013-4774-3
    Zhang, Y. M., Y. Q. Wang, X. Y. Zhang, et al., 2018: Chemical components, variation, and source identification of PM1 during heavy air pollution episodes in Beijing. J. Meteor. Res., 32, 1–13. doi: 10.1007/s13351-018-7051-8
    Zheng, G. J., F. K. Duan, H. Su, et al., 2015: Exploring the severe winter haze in Beijing: The impact of synoptic weather, regional transport and heterogeneous reactions. Atmos. Chem. Phys., 15, 2969–2983. doi: 10.5194/acp-15-2969-2015
    Zhong, J. T., X. Y. Zhang, Y. Q. Wang, et al., 2017: Relative contributions of boundary-layer meteorological factors to the explosive growth of PM2.5 during the red-alert heavy pollution episodes in Beijing in December 2016. J. Meteor. Res., 31, 809–819. doi: 10.1007/s13351-017-7088-0
    Zhou, S. Z., P. K., Davy, X. M. Wang, et al., 2016: High time-resolved elemental components in fine and coarse particles in the Pearl River Delta region of southern China: Dynamic variations and effects of meteorology. Sci. Total Environ., 572, 634–648. doi: 10.1016/j.scitotenv.2016.05.194
  • Related Articles

  • Cited by

    Periodical cited type(9)

    1. Hua Zhang, Liting Liu, Lei Bi, et al. Advances in Atmospheric Radiation: Theories, Models, and Their Applications. Part I: Atmospheric Gas Absorption and Particle Scattering. Journal of Meteorological Research, 2024, 38(2): 151. DOI:10.1007/s13351-024-3091-4
    2. Maria Lívia L.M. Gava, Simone M.S. da Costa, Caio Atila P. Sena. The effects of changes in HITRAN and the water vapor continuum model on infrared radiative transfer calculations and remote sensing applications. Journal of Quantitative Spectroscopy and Radiative Transfer, 2024, 322: 109025. DOI:10.1016/j.jqsrt.2024.109025
    3. K. P. Shine, G. Myhre. The Spectral Nature of Stratospheric Temperature Adjustment and its Application to Halocarbon Radiative Forcing. Journal of Advances in Modeling Earth Systems, 2020, 12(3) DOI:10.1029/2019MS001951
    4. Mingwei Zhu, Feng Zhang, Wenwen Li, et al. The impact of various HITRAN molecular spectroscopic databases on infrared radiative transfer simulation. Journal of Quantitative Spectroscopy and Radiative Transfer, 2019, 234: 55. DOI:10.1016/j.jqsrt.2019.04.031
    5. D. R. Feldman, W. D. Collins, S. C. Biraud, et al. Observationally derived rise in methane surface forcing mediated by water vapour trends. Nature Geoscience, 2018, 11(4): 238. DOI:10.1038/s41561-018-0085-9
    6. Brijesh Kumar, Venkat Lakshmi. Accessing the capability of TRMM 3B42 V7 to simulate streamflow during extreme rain events: Case study for a Himalayan River Basin. Journal of Earth System Science, 2018, 127(2) DOI:10.1007/s12040-018-0928-1
    7. FU Jia, WANG Zhenzhan. Simulation of Microwave and Sub-millimeter Wave Radiation from 1 to 3000GHz of Planetary Atmosphere. Chinese Journal of Space Science, 2017, 37(2): 192. DOI:10.11728/cjss2017.02.192
    8. H. Zhang, X. Jing, J. Li. Application and evaluation of a new radiation code under McICA scheme in BCC_AGCM2.0.1. Geoscientific Model Development, 2014, 7(3): 737. DOI:10.5194/gmd-7-737-2014
    9. Christopher J. Merchant, Owen Embury. Optical Radiometry for Ocean Climate Measurements. Experimental Methods in the Physical Sciences, DOI:10.1016/B978-0-12-417011-7.00015-5

    Other cited types(0)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return