Birmili, W., L. Tomsche, A. Sonntag, et al., 2013: Variability of aerosol particles in the urban atmosphere of Dresden (Germany): Effects of spatial scale and particle size. Meteor. Z., 22, 195–211. doi: 10.1127/0941-2948/2013/0395
|
Cheng, Y. F., H. Su, D. Rose, et al., 2012: Size-resolved measurement of the mixing state of soot in the megacity Beijing, China: Diurnal cycle, aging and parameterization. Atmos. Chem. Phys., 12, 4477–4491. doi: 10.5194/acp-12-4477-2012
|
Cohen, J. B., 2014: Quantifying the occurrence and magnitude of the Southeast Asian fire climatology. Environ. Res. Lett., 9, 114018. doi: 10.1088/1748-9326/9/11/114018
|
Cohen, J. B., and C. Wang, 2014: Estimating global black carbon emissions using a top-down Kalman filter approach. J. Geophys. Res., 119, 307–323. doi: 10.1002/2013JD019912
|
Dal Maso, M., M. Kulmala, I. Riipinen, et al., 2005: Formation and growth of fresh atmospheric aerosol: Eight years of aerosol size distribution data from SMEAR II, Hyytiälä, Finland. Boreal Environ. Res., 10, 323–336.
|
Fuks, N. A., and A. G. Sutugin, 1970: Highly Dispersed Aerosols. Ann Arbor Science Publishers, Ann Arbor, London, 47–60.
|
Gunthe, S. S., D. Rose, H. Su, et al., 2011: Cloud condensation nuclei (CCN) from fresh and aged air pollution in the megacity region of Beijing. Atmos. Chem. Phys., 11, 11023–11039. doi: 10.5194/acp-11-11023-2011
|
Guo, S., M. Hu, M. L. Zamora, et al., 2014: Elucidating severe urban haze formation in China. Proc. Natl. Acad. Sci. USA, 111, 17373–17378. doi: 10.1073/pnas.1419604111
|
Hussein, T., M. Dal Maso, T. Petäjä, et al., 2005: Evaluation of an automatic algorithm for fitting the particle number size distributions. Boreal Environ. Res., 10, 337–355.
|
Jia, Y. T., K. A. Rahn, K. B. He, et al., 2008: A novel technique for quantifying the regional component of urban aerosol solely from its sawtooth cycles. J. Geophys. Res., 113, D21309. doi: 10.1029/2008JD010389
|
Kivekäs, N., J. Sun, M. Zhan, et al., 2009: Long term particle size distribution measurements at Mount Waliguan, a high-altitude site in inland China. Atmos. Chem. Phys., 9, 5461–5474. doi: 10.5194/acp-9-5461-2009
|
Kulmala, M., M. Dal Maso, J. M. Mäkelä, et al., 2001: On the formation, growth and composition of nucleation mode particles. Tellus B, 53, 479–490. doi: 10.3402/tellusb.v53i4.16622
|
Kulmala, M., H. Vehkamäki, T. Petäjä, et al., 2004: Formation and growth rates of ultrafine atmospheric particles: A review of observations. J. Aeros. Sci., 35, 143–176. doi: 10.1016/j.jaerosci.2003.10.003
|
Kulmala, M., T. Petäjä, T. Nieminen, et al., 2012: Measurement of the nucleation of atmospheric aerosol particles. Nat. Protoc., 7, 1651–1667. doi: 10.1038/nprot.2012.091
|
|
Li, K., H. Liao, Y. H. Mao, et al., 2016: Source sector and region contributions to concentration and direct radiative forcing of black carbon in China. Atmos. Environ., 124, 351–366. doi: 10.1016/j.atmosenv.2015.06.014
|
Ma, N., and W. Birmili, 2015: Estimating the contribution of photochemical particle formation to ultrafine particle number averages in an urban atmosphere. Sci. Total Environ., 512–513, 154–166. doi: 10.1016/j.scitotenv.2015.01.009
|
Müller, T., J. S. Henzing, G. de Leeuw, et al., 2011: Characterization and intercomparison of aerosol absorption photometers: Result of two intercomparison workshops. Atmos. Meas. Tech., 4, 245–268. doi: 10.5194/amt-4-245-2011
|
Peng, J. F., M. Hu, Z. B. Wang, et al., 2014: Submicron aerosols at thirteen diversified sites in China: Size distribution, new particle formation and corresponding contribution to cloud condensation nuclei production. Atmos. Chem. Phys., 14, 10249–10265. doi: 10.5194/acp-14-10249-2014
|
Pfeifer, S., W. Birmili, A. Schladitz, et al., 2014: A fast and easy-to-implement inversion algorithm for mobility particle size spectrometers considering particle number size distribution information outside of the detection range. Atmos. Meas. Tech., 7, 95–105. doi: 10.5194/amt-7-95-2014
|
Qi, X. M., A. J. Ding, W. Nie, et al., 2015: Aerosol size distribution and new particle formation in the western Yangtze River Delta of China: 2 years of measurements at the SORPES station. Atmos. Chem. Phys., 15, 12445–12464. doi: 10.5194/acp-15-12445-2015
|
Shen, X. J., J. Y. Sun, Y. M. Zhang, et al., 2011: First long-term study of particle number size distributions and new particle formation events of regional aerosol in the North China Plain. Atmos. Chem. Phys., 11, 1565–1580. doi: 10.5194/acp-11-1565-2011
|
Shen, X. J., J. Y. Sun, X. Y. Zhang, et al., 2016a: Particle climatology in central East China retrieved from measurements in planetary boundary layer and in free troposphere at a 1500-m-high mountaintop site. Aerosol Air Qual. Res., 16, 689–701. doi: 10.4209/aaqr.2015.02.0070
|
Shen, X. J., J. Y. Sun, X. Y. Zhang, et al., 2016b: Key features of new particle formation events at background sites in China and their influence on cloud condensation nuclei. Front. Environ. Sci. Eng., 10, 5. doi: 10.1007/s11783-016-0833-2
|
Sun, J. Y., Q. Zhang, M. R. Canagaratna, et al., 2010: Highly time- and size-resolved characterization of submicron aerosol particles in Beijing using an aerodyne aerosol mass spectrometer. Atmos. Environ., 44, 131–140. doi: 10.1016/j.atmosenv.2009.03.020
|
Vu, T. V., J. M. Delgado-Saborit, and R. M. Harrison, 2015: Review: Particle number size distributions from seven major sources and implications for source apportionment studies. Atmos. Environ., 122, 114–132. doi: 10.1016/j.atmosenv.2015.09.027
|
Wang, Y. Q., X. Y. Zhang, and R. R. Draxler, 2009: TrajStat: GIS-based software that uses various trajectory statistical analysis methods to identify potential sources from long-term air pollution measurement data. Environ. Modell. Softw., 24, 938–939. doi: 10.1016/j.envsoft.2009.01.004
|
Wang, Z. B., M. Hu, D. L. Yue, et al., 2011: Evaluation on the role of sulfuric acid in the mechanisms of new particle formation for Beijing case. Atmos. Chem. Phys., 11, 12663–12671. doi: 10.5194/acp-11-12663-2011
|
Wang, Z. B., M. Hu, J. Y. Sun, et al., 2013: Characteristics of regional new particle formation in urban and regional background environments in the North China Plain. Atmos. Chem. Phys., 13, 12495–12506. doi: 10.5194/acp-13-12495-2013
|
Wang, H. L., B. Zhu, L. J. Shen, et al., 2014: Number size distribution of aerosols at Mt. Huang and Nanjing in the Yangtze River Delta, China: Effects of air masses and characteristics of new particle formation. Atmos. Res., 150, 42–56. doi: 10.1016/j.atmosres.2014.07.020
|
Wang, Y. S., L. Yao, L. L. Wang, et al., 2014: Mechanism for the formation of the January 2013 heavy haze pollution episode over central and eastern China. Sci. China Earth Sci., 57, 14–25. doi: 10.1007/s11430-013-4773-4
|
Wang, Z. F., J. Li, Z. Wang, et al., 2014: Modeling study of regional severe hazes over mid–eastern China in January 2013 and its implications on pollution prevention and control. Sci. China Earth Sci., 57, 3–13. doi: 10.1007/s11430-013-4793-0
|
Wiedensohler, A., W. Birmili, A. Nowak, et al., 2012: Mobility particle size spectrometers: Harmonization of technical standards and data structure to facilitate high quality long-term observations of atmospheric particle number size distributions. Atmos. Meas. Tech., 5, 657–685. doi: 10.5194/amt-5-657-2012
|
Wu, Z. J., M. Hu, S. Liu, et al., 2007: New particle formation in Beijing, China: Statistical analysis of a 1-year data set. J. Geophys. Res., 112, D09209. doi: 10.1029/2006jd007406
|
Wu, Z. J., M. Hu, P. Lin, et al., 2008: Particle number size distribution in the urban atmosphere of Beijing, China. Atmos. Environ., 42, 7967–7980. doi: 10.1016/j.atmosenv.2008.06.022
|
Yue, D. L., M. Hu, R. Y. Zhang, et al., 2011: Potential contribution of new particle formation to cloud condensation nuclei in Beijing. Atmos. Environ., 45, 6070–6077. doi: 10.1016/j.atmosenv.2011.07.037
|
Zhang, R. H., Q. Li, and R. N. Zhang, 2014: Meteorological conditions for the persistent severe fog and haze event over eastern China in January 2013. Sci. China Earth Sci., 57, 26–35. doi: 10.1007/s11430-013-4774-3
|
Zhang, Y. M., Y. Q. Wang, X. Y. Zhang, et al., 2018: Chemical components, variation, and source identification of PM1 during heavy air pollution episodes in Beijing. J. Meteor. Res., 32, 1–13. doi: 10.1007/s13351-018-7051-8
|
Zheng, G. J., F. K. Duan, H. Su, et al., 2015: Exploring the severe winter haze in Beijing: The impact of synoptic weather, regional transport and heterogeneous reactions. Atmos. Chem. Phys., 15, 2969–2983. doi: 10.5194/acp-15-2969-2015
|
Zhong, J. T., X. Y. Zhang, Y. Q. Wang, et al., 2017: Relative contributions of boundary-layer meteorological factors to the explosive growth of PM 2.5 during the red-alert heavy pollution episodes in Beijing in December 2016. J. Meteor. Res., 31, 809–819. doi: 10.1007/s13351-017-7088-0
|
Zhou, S. Z., P. K., Davy, X. M. Wang, et al., 2016: High time-resolved elemental components in fine and coarse particles in the Pearl River Delta region of southern China: Dynamic variations and effects of meteorology. Sci. Total Environ., 572, 634–648. doi: 10.1016/j.scitotenv.2016.05.194
|