1. |
Chang Kong, Xiaodan Chen, Zhiping Wen, et al. A non-ENSO driver of the South China Sea winter monsoon: North Pacific sea ice. Atmospheric and Oceanic Science Letters, 2025.
DOI:10.1016/j.aosl.2025.100593
|
2. |
Yanping Gao, Ke Fan, Zhiqing Xu. An interannual dipole mode of midsummer persistent extreme high-temperature days between South China and Southwest China: effects of Indo-Pacific sea surface temperature. Climate Dynamics, 2025, 63(1)
DOI:10.1007/s00382-024-07528-0
|
3. |
Tao Zhou, Zhiwei Wu. Another look at interannual variations of the Asian-Australian monsoon during boreal summer: effects of sea surface temperatures in three tropical oceans. Climate Dynamics, 2025, 63(2)
DOI:10.1007/s00382-025-07619-6
|
4. |
Yuhao Cai, Song Yang, Weizhen Chen, et al. Inhomogeneity of the seasonal distribution of tropical cyclogenesis over the western North Pacific associated with the out-of-phase change in genesis frequency between summer and autumn. Atmospheric Research, 2025, 316: 107969.
DOI:10.1016/j.atmosres.2025.107969
|
5. |
Enguo Sheng, Bin Liu, Haijun Peng, et al. Hydroclimatic variations in southwestern China during the Middle to Late Holocene transition and effects on the evolution of Late Neolithic cultures in the upper Yangtze River Valley. Quaternary Science Reviews, 2025, 352: 109225.
DOI:10.1016/j.quascirev.2025.109225
|
6. |
Zhichao Yang, Chujie Gao, Gen Li, et al. Opposite summer precipitation anomalies over the Maritime Continent in fast and slow decaying El Niño cases. Atmospheric Research, 2025, 314: 107814.
DOI:10.1016/j.atmosres.2024.107814
|
7. |
Yuhang Zhao, Tim Li, Xiao Pan. Why zonal wind anomalies were “decoupled” to El Niño in July 2023. Climate Dynamics, 2025, 63(3)
DOI:10.1007/s00382-025-07625-8
|
8. |
Lin Chen, Gen Li. Strengthened impact of the spring North Atlantic tripole sea surface temperature anomalies on the following peak summer western North Pacific subtropical high since the middle 1990s. Climate Dynamics, 2025, 63(3)
DOI:10.1007/s00382-025-07613-y
|
9. |
Jing Wang, Ding Ding, Peng Hu, et al. Rainy season onset over the Southeast Asia low-latitude highlands: objective definition and relation with spring drought. Climate Dynamics, 2025, 63(1)
DOI:10.1007/s00382-024-07502-w
|
10. |
Tuan Bui-Minh, Kim-Cuong Nguyen, Doan-Quang Van, et al. An Application of Cluster Analysis in Investigating Characteristics of the South and Southeast Asian Monsoon Onset in ENSO Years. SOLA, 2024, 20(0): 386.
DOI:10.2151/sola.2024-051
|
11. |
Zhiyuan Lu, Lu Dong, Fengfei Song, et al. Quantifying the relative contributions of three tropical oceans to the western North Pacific anomalous anticyclone. Environmental Research Letters, 2024, 19(10): 104016.
DOI:10.1088/1748-9326/ad677d
|
12. |
Jinxin Zhang, Jing Wang, Lifang Liu, et al. On potential salient climatic factors tied to late-summer compound drought and heatwaves around Horqin sandy land, Northeast China. Theoretical and Applied Climatology, 2024, 155(7): 6829.
DOI:10.1007/s00704-024-05053-y
|
13. |
Fei Xin, Wei Wang. Extended-Range Forecast of Winter Rainfall in the Yangtze River Delta Based on Intra-Seasonal Oscillation of Atmospheric Circulations. Atmosphere, 2024, 15(2): 206.
DOI:10.3390/atmos15020206
|
14. |
Bicheng Huang, Shankai Tang, Yineng Rong, et al. Disparity in Meiyu precipitation in the middle-lower Yangtze River basin during El Niño decay years. Atmospheric Research, 2024, 312: 107728.
DOI:10.1016/j.atmosres.2024.107728
|
15. |
Lingyu Zhou, Yan Xia, Chen Zhou, et al. Sensitivity of western Pacific subtropical high to regional sea surface temperature changes. Global and Planetary Change, 2024, 242: 104565.
DOI:10.1016/j.gloplacha.2024.104565
|
16. |
Shouyi Wang, Caroline C. Ummenhofer, Sujata A. Murty, et al. Quantifying the internal and external drivers of Southeast Asian rainfall extremes on decadal timescales. Climate Dynamics, 2024, 62(10): 9821.
DOI:10.1007/s00382-024-07412-x
|
17. |
Hao Yang, Chunguang Cui, Cuihong Wu, et al. Analysis and comparison of water vapor transport features and circulation anomalies during the super-strong Meiyu period of 2020 and 1998*. Weather and Climate Extremes, 2024, 44: 100654.
DOI:10.1016/j.wace.2024.100654
|
18. |
Yiyang Hu, Maoqiu Jian, Si Gao. Effect of quasi‐biennial oscillation on the intensity of the South China Sea summer monsoon. International Journal of Climatology, 2024, 44(2): 448.
DOI:10.1002/joc.8336
|
19. |
Wenyan Wang, Xing Yuan. Climate change and La Niña increase the likelihood of the ‘7·20’ extraordinary typhoon‐rainstorm in Zhengzhou, China. International Journal of Climatology, 2024, 44(5): 1355.
DOI:10.1002/joc.8386
|
20. |
P. Priya, Milind Mujumdar, S. D. Sanap, et al. Response of west pacific subtropical high to northern hemispheric warming: insights from paleo climate models. Climate Dynamics, 2024.
DOI:10.1007/s00382-024-07194-2
|
21. |
Suqin Zhang, Peng Hu, Gang Huang, et al. Observed impacts of the North Pacific Victoria Mode on Indian summer monsoon onset. Atmospheric Research, 2024, 297: 107126.
DOI:10.1016/j.atmosres.2023.107126
|
22. |
Zhanglin Li, Hong-Li Ren, Mengmeng Lu, et al. Interannual variations of westward extension area of western Pacific subtropical high and its relationship with precipitation in East Asia. Atmospheric Research, 2024, 298: 107148.
DOI:10.1016/j.atmosres.2023.107148
|
23. |
Shiori Sugimoto, Yongkang Xue, Tomonori Sato, et al. Influence of convective processes on weather research and forecasting model precipitation biases over East Asia. Climate Dynamics, 2024, 62(4): 2859.
DOI:10.1007/s00382-022-06587-5
|
24. |
Po‐Ju Chen, Chi‐Hua Wu, Yue‐Gau Chen, et al. Impact of Solar Activity and ENSO on the Early Summer Asian Monsoon During the Last Millennium. Geophysical Research Letters, 2024, 51(3)
DOI:10.1029/2023GL105668
|
25. |
Shuyan Wu, Wenshi Lin, Lu Dong, et al. Role of SST in Seasonal Western North Pacific Anomalous Anticyclone: Insights From AMIP Simulations in CMIP6. Geophysical Research Letters, 2024, 51(3)
DOI:10.1029/2023GL107080
|
26. |
Yuxuan Zhao, Ruoyu Liu, Chenwei Yao, et al. The relationship between the South China Sea summer monsoon onset and North Pacific meridional sea surface temperature anomalies. International Journal of Climatology, 2024, 44(10): 3483.
DOI:10.1002/joc.8534
|
27. |
Junqiang Yao, Lianglu Qu, Yaning Chen, et al. Hydro-climatological drivers of the unprecedented flooding in August 2022 along the Tarim River, China. Journal of Hydrology, 2024, 639: 131630.
DOI:10.1016/j.jhydrol.2024.131630
|
28. |
Guangliang Li, Licheng Feng, Wei Zhuang, et al. Differences in spring precipitation over southern China associated with multiyear La Niña events. Acta Oceanologica Sinica, 2024, 43(2): 1.
DOI:10.1007/s13131-023-2147-0
|
29. |
Yanxing Wu, Run Liu, Jianmin Xu, et al. Anomalous high ozone in the Pearl River Delta, China in 2019: A cause attribution analysis. Atmospheric Environment, 2024, 319: 120278.
DOI:10.1016/j.atmosenv.2023.120278
|
30. |
Pengcheng Zhang, Shang-Ping Xie, Yu Kosaka, et al. Why East Asian monsoon anomalies are more robust in post El Niño than in post La Niña summers. Nature Communications, 2024, 15(1)
DOI:10.1038/s41467-024-51885-7
|
31. |
Zixuan Zeng, Jianqi Sun, Shengping He. Comparison of the physical processes underlying heavy and light rain variations: insight from spring precipitation over Southern China. Climate Dynamics, 2024, 62(10): 9951.
DOI:10.1007/s00382-024-07416-7
|
32. |
Jinjie Song, Philip J Klotzbach, Na Wei, et al. Remote effect of tropical south Atlantic sea surface temperature anomalies on April–June accumulated cyclone energy over the western North Pacific. Environmental Research Communications, 2024, 6(7): 071007.
DOI:10.1088/2515-7620/ad62c5
|
33. |
Yuhan Gong, Tim Li. Southward-shift zonal wind patterns during ENSO in CMIP6 models. Climate Dynamics, 2024, 62(9): 8979.
DOI:10.1007/s00382-024-07374-0
|
34. |
Jia Wu, Hanjie Fan, Shuheng Lin, et al. Boosting effect of strong western pole of the Indian Ocean Dipole on the decay of El Niño events. npj Climate and Atmospheric Science, 2024, 7(1)
DOI:10.1038/s41612-023-00554-5
|
35. |
Yuepeng Hu, Botao Zhou, Huijun Wang, et al. Record-breaking summer-autumn drought in southern China in 2022: Roles of tropical sea surface temperature and Eurasian warming. Science China Earth Sciences, 2024, 67(2): 420.
DOI:10.1007/s11430-023-1242-8
|
36. |
Jing Wang, Yue Ma, Ping Liang, et al. Atmospheric and oceanic signals for the interannual variability of warm-season flood-inducing rainfall frequency over the middle and lower reaches of the Yangtze River basin. Climate Dynamics, 2024, 62(6): 5445.
DOI:10.1007/s00382-024-07171-9
|
37. |
Peng Hu, Wen Chen, Shangfeng Chen, et al. Quantitative decomposition of the interdecadal change in the correlation coefficient between the El Niño-Southern Oscillation and South Asian summer monsoon. Theoretical and Applied Climatology, 2024, 155(5): 3831.
DOI:10.1007/s00704-024-04851-8
|
38. |
Peishan Chen, Riyu Lu. A teleconnection pattern of upper-tropospheric circulation anomalies over the Eurasian continent associated with the interannual variability of atmospheric convection over the tropical western North Pacific in July. Atmospheric and Oceanic Science Letters, 2024, 17(3): 100451.
DOI:10.1016/j.aosl.2023.100451
|
39. |
Yang Zhang, Yan Pan, Yongkang Xue, et al. Near-global summer circulation response to the spring surface temperature anomaly in Tibetan Plateau –– the GEWEX/LS4P first phase experiment. Climate Dynamics, 2024, 62(4): 2907.
DOI:10.1007/s00382-024-07210-5
|
40. |
Xuefei Chen, Wenfeng Deng, Hangfang Xiao, et al. Coral Paleoclimate Perspectives Support the Role of Low‐Latitude Forcing on the 4.2 ka BP Event. Geophysical Research Letters, 2023, 50(13)
DOI:10.1029/2023GL104010
|
41. |
Jung-Eun Esther Kim, Changhyun Yoo, Sang-Hun Park. Interdecadal change in the relationship between the western North Pacific subtropical high and the ENSO. Theoretical and Applied Climatology, 2023, 151(3-4): 1435.
DOI:10.1007/s00704-022-04326-8
|
42. |
Fei Zheng, Bo Wu, Lin Wang, et al. Can Eurasia Experience a Cold Winter under a Third-Year La Niña in 2022/23?. Advances in Atmospheric Sciences, 2023, 40(4): 541.
DOI:10.1007/s00376-022-2331-8
|
43. |
Qiong Wu, Xiaochun Wang, Yijun He, et al. The Relationship between Chlorophyll Concentration and ENSO Events and Possible Mechanisms off the Changjiang River Estuary. Remote Sensing, 2023, 15(9): 2384.
DOI:10.3390/rs15092384
|
44. |
Juan Wang, Ke Fan, Zhiqing Xu, et al. A dipole pattern of July precipitation between South China and the eastern Tibetan Plateau and impacts of ENSO. Climate Dynamics, 2023, 61(11-12): 5785.
DOI:10.1007/s00382-023-06884-7
|
45. |
Zixuan Zeng, Jianqi Sun. Influence of different configurations of western North Pacific anticyclone and Siberian high on spring climate over China. International Journal of Climatology, 2023, 43(6): 2699.
DOI:10.1002/joc.7997
|
46. |
Leishan Jiang, Han‐Ching Chen, Tim Li, et al. Diverse Response of Western North Pacific Anticyclone to Fast‐Decay El Niño During Decaying Summer. Geophysical Research Letters, 2023, 50(7)
DOI:10.1029/2022GL102612
|
47. |
Gen Li, Lin Chen, Bo Lu. A Physics‐Based Empirical Model for the Seasonal Prediction of the Central China July Precipitation. Geophysical Research Letters, 2023, 50(3)
DOI:10.1029/2022GL101463
|
48. |
Chujie Gao, Gen Li. Asymmetric effect of ENSO on the maritime continent precipitation in decaying summers. Climate Dynamics, 2023, 61(5-6): 2839.
DOI:10.1007/s00382-023-06716-8
|
49. |
Zitian Xu, Xiu-Qun Yang, Lingfeng Tao, et al. Impact of anomalous Eurasian blocking activities on the East Asian Meiyu rainfall. Climate Dynamics, 2023, 61(7-8): 3127.
DOI:10.1007/s00382-023-06735-5
|
50. |
Daquan Zhang, Lijuan Chen. Hybrid statistical–dynamical seasonal prediction of tropical cyclone track density over Western North Pacific. Climate Dynamics, 2023, 60(7-8): 2517.
DOI:10.1007/s00382-022-06462-3
|
51. |
Bicheng Huang, Tao Su, Rong Zhi, et al. Synergistic effect of El Niño Southern oscillation and subtropical Indian Ocean Dipole on Southern China winter precipitation. Atmospheric Research, 2023, 293: 106928.
DOI:10.1016/j.atmosres.2023.106928
|
52. |
Liang Shi, Ruiqiang Ding, Shujuan Hu, et al. Extratropical impacts on the 2020–2023 Triple-Dip La Niña event. Atmospheric Research, 2023, 294: 106937.
DOI:10.1016/j.atmosres.2023.106937
|
53. |
Mingting Li, Ziyang Cao, Arnold L Gordon, et al. Roles of the Indo-Pacific subsurface Kelvin waves and volume transport in prolonging the triple-dip 2020–2023 La Niña. Environmental Research Letters, 2023, 18(10): 104043.
DOI:10.1088/1748-9326/acfcce
|
54. |
Yanxin Zhu, Yan‐Fang Sang, Bin Wang, et al. Heterogeneity in Spatiotemporal Variability of High Mountain Asia's Runoff and Its Underlying Mechanisms. Water Resources Research, 2023, 59(7)
DOI:10.1029/2022WR032721
|
55. |
Shankai Tang, Shaobo Qiao, Bin Wang, et al. Linkages of unprecedented 2022 Yangtze River Valley heatwaves to Pakistan flood and triple-dip La Niña. npj Climate and Atmospheric Science, 2023, 6(1)
DOI:10.1038/s41612-023-00386-3
|
56. |
Junhu Zhao, Jinqing Zuo, Han Zhang, et al. Extreme precipitation driven by the rapid tropical Atlantic warming and the second developing La Niña over the Yangtze–Huaihe River Basin in August 2021. Climate Dynamics, 2023, 61(5-6): 2581.
DOI:10.1007/s00382-023-06683-0
|
57. |
Wei Yu, Yimin Liu, Tuantuan Zhang, et al. Potential Impact of Winter–Spring North Atlantic Tripole SSTAs on the Following Autumn–Winter El Niño–Southern Oscillation: Bridging Role of the Tibetan Plateau. Geophysical Research Letters, 2023, 50(5)
DOI:10.1029/2022GL100663
|
58. |
Haosu Tang, Gang Huang, Kaiming Hu, et al. Weak persistence of Northwest Pacific anomalous anticyclone during post-El Niño summers in CMIP5 and CMIP6 models. Climate Dynamics, 2023, 61(7-8): 3805.
DOI:10.1007/s00382-023-06772-0
|
59. |
Xiaohui Wang, Tim Li, Suxiang Yao. Distinctive Rainfall Evolutions in East Asia between Super and Regular El Niño Events during Their Decaying Summers. Journal of Climate, 2023, 36(1): 155.
DOI:10.1175/JCLI-D-22-0143.1
|
60. |
Shengyuan Liu, Jianjun Xu, Shifei Tu, et al. Relationship between South China Sea Summer Monsoon and Western North Pacific Tropical Cyclones Linkages with the Interaction of Indo-Pacific Pattern. Atmosphere, 2023, 14(4): 645.
DOI:10.3390/atmos14040645
|
61. |
Huixin Li, Bo Sun, Huijun Wang, et al. Characteristics and mechanisms of the severe compound cold-wet event in southern China during February 2022. Environmental Research Letters, 2023, 18(11): 114021.
DOI:10.1088/1748-9326/ad0163
|
62. |
Amol S. Vibhute, Jasti S. Chowdary, Patekar Darshana, et al. Abrupt sub-seasonal rainfall variability over India during summer monsoon 2021: Interaction between midlatitude and tropical circulation. Atmospheric Research, 2023, 292: 106869.
DOI:10.1016/j.atmosres.2023.106869
|
63. |
Ao Li, Hao Yang, Chunguang Cui, et al. The 10 Most Influential Heavy Rain Events in China in 2022: Selection and Evaluation. Journal of Meteorological Research, 2023, 37(6): 908.
DOI:10.1007/s13351-023-3048-z
|
64. |
Yanjun Qi, Renhe Zhang, Zhuo Wang. Large-scale background and role of quasi-biweekly moisture transport in the extreme Yangtze River rainfall in summer 2020. Climate Dynamics, 2023, 61(7-8): 3721.
DOI:10.1007/s00382-023-06774-y
|
65. |
Lin Chen, Gen Li. Asymmetric effect of ENSO in the decaying stage on the central China July precipitation. Climate Dynamics, 2023, 61(5-6): 3029.
DOI:10.1007/s00382-023-06731-9
|
66. |
Nguyen-Xuan Hau, Masaki Sano, Takeshi Nakatsuka, et al. The modulation of Pacific Decadal Oscillation on ENSO-East Asian summer monsoon relationship over the past half-millennium. Science of The Total Environment, 2023, 857: 159437.
DOI:10.1016/j.scitotenv.2022.159437
|
67. |
Yulong Yao, Chunzai Wang, Chao Wang. Record-breaking 2020 summer marine heatwaves in the western North Pacific. Deep Sea Research Part II: Topical Studies in Oceanography, 2023, 209: 105288.
DOI:10.1016/j.dsr2.2023.105288
|
68. |
Meiru Zhang, Zhen-Qiang Zhou, Renhe Zhang, et al. Interannual variability of surface air temperature over indochina peninsula during summer monsoon onset. Climate Dynamics, 2023, 60(11-12): 3543.
DOI:10.1007/s00382-022-06470-3
|
69. |
Zhiwei Zhu, Yongning Feng, Wei Jiang, et al. The compound impacts of sea surface temperature modes in the Indian and North Atlantic oceans on the extreme precipitation days in the Yangtze River Basin. Climate Dynamics, 2023, 61(7-8): 3327.
DOI:10.1007/s00382-023-06733-7
|
70. |
Shao Shuai, Wu Duo, Wang Tao, et al. Late Holocene hydrological variations recorded by sediments from Lake Gongka in the Hengduan Mountains and their linkage with the Indian summer monsoon. Journal of Lake Sciences, 2023, 35(3): 1126.
DOI:10.18307/2023.0329
|
71. |
Zixiang Yan, Bo Wu, Tim Li, et al. Mechanisms Determining Diversity of ENSO-Driven Equatorial Precipitation Anomalies. Journal of Climate, 2022, 35(3): 923.
DOI:10.1175/JCLI-D-21-0363.1
|
72. |
Shankai Tang, Shaobo Qiao, Taichen Feng, et al. Predictability of the record-breaking rainfall over the Yangtze and Huaihe River valley in 2020 summer by the NCEP CFSv2. Atmospheric Research, 2022, 266: 105956.
DOI:10.1016/j.atmosres.2021.105956
|
73. |
Qucheng Chu, Tao Lian, Dake Chen, et al. The role of El Niño in the extreme Mei-yu rainfall in 2020. Atmospheric Research, 2022, 266: 105965.
DOI:10.1016/j.atmosres.2021.105965
|
74. |
Lin Chen, Gen Li. Interdecadal change in the relationship between El Niño in the decaying stage and the central China summer precipitation. Climate Dynamics, 2022, 59(7-8): 1981.
DOI:10.1007/s00382-022-06192-6
|
75. |
Liu Yang, Junhu Zhao, Shuai Li, et al. Enhanced impact of early‐summer tropical eastern Pacific sea surface temperature on the July–August precipitation over North China after the late 1970s. International Journal of Climatology, 2022, 42(6): 3463.
DOI:10.1002/joc.7427
|
76. |
Linye Song, Shangfeng Chen, Wen Chen, et al. Distinct evolutions of haze pollution from winter to the following spring over the North China Plain: role of the North Atlantic sea surface temperature anomalies. Atmospheric Chemistry and Physics, 2022, 22(3): 1669.
DOI:10.5194/acp-22-1669-2022
|
77. |
Fadila Jasmin Fakaruddin, Najhan Azima Nawai, Mahani Abllah, et al. Climatological Features of Squall Line at the Borneo Coastline during Southwest Monsoon. Atmosphere, 2022, 13(1): 116.
DOI:10.3390/atmos13010116
|
78. |
Lin Chen, Gen Li, Shang-Min Long, et al. Interdecadal change in the influence of El Niño in the developing stage on the central China summer precipitation. Climate Dynamics, 2022, 59(5-6): 1265.
DOI:10.1007/s00382-021-06036-9
|
79. |
Yanping Zhong, Edward A. Laws, Jiafu Zhuang, et al. Responses of phytoplankton communities driven by differences of source water intrusions in the El Niño and La Niña events in the Taiwan Strait during the early spring. Frontiers in Marine Science, 2022, 9
DOI:10.3389/fmars.2022.997591
|
80. |
Guansheng Huang, Run Wang, Jingpeng Liu, et al. Seasonally Evolving Impacts of Multiyear La Niña on Precipitation in Southern China. Frontiers in Earth Science, 2022, 10
DOI:10.3389/feart.2022.884604
|
81. |
Congxi Fang, Yu Liu, Qiang Li, et al. How is the El Niño–Southern Oscillation signal recorded by tree‐ring oxygen isotopes in southeastern China?. International Journal of Climatology, 2022, 42(12): 6459.
DOI:10.1002/joc.7601
|
82. |
Yiming Wang, Bo Wu, Tianjun Zhou. Maintenance of Western North Pacific Anomalous Anticyclone in Boreal Summer by Wind-Induced Moist Enthalpy Advection Mechanism. Journal of Climate, 2022, 35(14): 4499.
DOI:10.1175/JCLI-D-21-0708.1
|
83. |
Baochao Liu, Yue Fang, Shuangwen Sun, et al. Increasing Precipitation in Early Winter Over the Southern China During the Past 40 years. Geophysical Research Letters, 2022, 49(24)
DOI:10.1029/2022GL101134
|
84. |
M. F. Larsen, R. F. Pfaff, R. Mesquita, et al. Gradient Winds and Neutral Flow Dawn‐Dusk Asymmetry in the Auroral Oval During Geomagnetically Disturbed Conditions. Journal of Geophysical Research: Space Physics, 2022, 127(1)
DOI:10.1029/2021JA029936
|
85. |
Mengxin Pan, Mengqian Lu. Long‐Lead Predictability of Western North Pacific Subtropical High. Journal of Geophysical Research: Atmospheres, 2022, 127(5)
DOI:10.1029/2021JD035967
|
86. |
Tiantian Yu, Juan Feng, Wen Chen, et al. Enhanced Tropospheric Biennial Oscillation of the East Asian Summer Monsoon since the Late 1970s. Journal of Climate, 2022, 35(5): 1613.
DOI:10.1175/JCLI-D-21-0416.1
|
87. |
Hedi Ma, Ruili Wang, Xing Li, et al. Why was South China extremely wet during January–February 2022 despite La Niña?. Frontiers in Earth Science, 2022, 10
DOI:10.3389/feart.2022.982225
|
88. |
Nguyen-Xuan Hau, Masaki Sano, Takeshi Nakatsuka, et al. The Modulation of Pacific Decadal Oscillation on Enso-East Asian Summer Monsoon Precipitation Relationship Over the Past Half-Millennium. SSRN Electronic Journal, 2022.
DOI:10.2139/ssrn.4160356
|
89. |
Li Gao, Pengfei Ren, Jiawen Zheng. Medium-Range Predictability of Boreal Summer Western North Pacific Subtropical High and Its ENSO Modulation. Frontiers in Earth Science, 2022, 10
DOI:10.3389/feart.2022.862989
|
90. |
Ziyu Ye, Tomoki Tozuka. Causal relationship between sea surface temperature and precipitation revealed by information flow. Frontiers in Climate, 2022, 4
DOI:10.3389/fclim.2022.1024384
|
91. |
Bin Liu, Enguo Sheng, Keke Yu, et al. Variations in monsoon precipitation over southwest China during the last 1500 years and possible driving forces. Science China Earth Sciences, 2022, 65(5): 949.
DOI:10.1007/s11430-021-9888-y
|
92. |
Xianke Yang, Ping Huang. The Diversity of ENSO Evolution during the Typical Decaying Periods Determined by an ENSO Developing Mode. Journal of Climate, 2022, 35(12): 3877.
DOI:10.1175/JCLI-D-21-0892.1
|
93. |
B. H. Vaid, R. H. Kripalani. Upper Vertical Thermal Contrast Over Western North Pacific and its Impact on the East Side of Tibetan Plateau During ENSO Years. Atmosphere-Ocean, 2022, 60(1): 13.
DOI:10.1080/07055900.2022.2060180
|
94. |
Tiantian Yu, Wen Chen, Ping Huang, et al. Recent interdecadal changes in the Tropospheric Biennial Oscillation of the East Asian summer monsoon. Atmospheric Research, 2022, 277: 106301.
DOI:10.1016/j.atmosres.2022.106301
|
95. |
文君 张, 佐励 余, 枫 姜, et al. <bold>ENSO</bold>组合模态对夏季西北太平洋异常反气旋维持的关键作用. SCIENTIA SINICA Terrae, 2022.
DOI:10.1360/SSTe-2021-0324
|
|
96. |
Peng Liu, Ying Zhang, Mingyue Tang. Effects of Atlantic multidecadal oscillation and Pacific decadal oscillation on interdecadal variability of fog frequency in autumn–winter season in Southwest China. International Journal of Climatology, 2022, 42(4): 2083.
DOI:10.1002/joc.7353
|
97. |
Meng Xu, Haiming Xu, Jing Ma, et al. Impact of Pacific Decadal Oscillation on interannual relationship between El Niño and South China Sea summer monsoon onset. International Journal of Climatology, 2022, 42(5): 2739.
DOI:10.1002/joc.7388
|
98. |
Haibo Hu, Yuheng Deng, Jiabei Fang, et al. Mechanism of Regional Subseasonal Precipitation in the Strongest and Weakest East Asian Summer Monsoon Subseasonal Variation Years. Journal of Ocean University of China, 2022, 21(6): 1411.
DOI:10.1007/s11802-022-5023-1
|
99. |
Fei Zhang, Xianyu Yang, Qingfei Sun, et al. Three-Dimensional Structural Anomalies of the Western Pacific Subtropical High Ridge and Its Relationship with Precipitation in China during August–September 2021. Atmosphere, 2022, 13(7): 1089.
DOI:10.3390/atmos13071089
|
100. |
Wenjun Zhang, Zuoli Yu, Feng Jiang, et al. Important role of the ENSO combination mode in the maintenance of the anomalous anticyclone over the western North Pacific in boreal summer. Science China Earth Sciences, 2022, 65(7): 1379.
DOI:10.1007/s11430-021-9908-5
|
101. |
Kai Ji, Zhongshi Zhang, Ruiqiang Ding, et al. Preceding winter Okhotsk Sea ice as a precursor to the following winter extreme precipitation in South China. Atmospheric Science Letters, 2022, 23(8)
DOI:10.1002/asl.1095
|
102. |
Xiaomeng Song, Renhe Zhang, Xinyao Rong. Dynamic Causes of ENSO Decay and Its Asymmetry. Journal of Climate, 2022, 35(2): 445.
DOI:10.1175/JCLI-D-21-0138.1
|
103. |
Suqiong Hu, Wenjun Zhang, Xin Geng, et al. Dominant modes of interannual variability of winter fog days over eastern China and their association with major SST variability. Climate Dynamics, 2022, 58(1-2): 413.
DOI:10.1007/s00382-021-05915-5
|
104. |
Response of Western North Pacific Anomalous Anticyclones in the Summer of Decaying El Niño to Global Warming: Diverse Projections Based on CMIP6 and CMIP5 Models. Journal of Climate, 2022, 35(1): 359.
DOI:10.1175/JCLI-D-21-0352.1
|
105. |
Yoo-Geun Ham, Seon-Yu Kang, Yerim Jeong, et al. Large-Scale Sea Surface Temperature Forcing Contributed to the 2013–17 Record-Breaking Meteorological Drought in the Korean Peninsula. Journal of Climate, 2022, 35(12): 3767.
DOI:10.1175/JCLI-D-21-0545.1
|
106. |
Yue Zhang, Wen Zhou, Xin Wang, et al. IOD, ENSO, and seasonal precipitation variation over Eastern China. Atmospheric Research, 2022, 270: 106042.
DOI:10.1016/j.atmosres.2022.106042
|
107. |
Feng Shi, Hugues Goosse, Jianping Li, et al. Interdecadal to Multidecadal Variability of East Asian Summer Monsoon Over the Past Half Millennium. Journal of Geophysical Research: Atmospheres, 2022, 127(20)
DOI:10.1029/2022JD037260
|
108. |
斌 刘, 恩国 盛, 科科 郁, et al. 过去<bold>1500</bold>年中国西南地区季风降水变化及其驱动因素. SCIENTIA SINICA Terrae, 2022, 52(7): 1310.
DOI:10.1360/SSTe-2021-0075
|
|
109. |
Yan Du, Zesheng Chen, Shang-Ping Xie, et al. Drivers and characteristics of the Indo-western Pacific Ocean capacitor. Frontiers in Climate, 2022, 4
DOI:10.3389/fclim.2022.1014138
|
110. |
F. L. Buckingham, S. A. Carolin, J. W. Partin, et al. Termination 1 Millennial‐Scale Rainfall Events Over the Sunda Shelf. Geophysical Research Letters, 2022, 49(5)
DOI:10.1029/2021GL096937
|
111. |
Leishan Jiang, Tim Li, Yoo‐Geun Ham. Critical Role of Tropical North Atlantic SSTA in Boreal Summer in Affecting Subsequent ENSO Evolution. Geophysical Research Letters, 2022, 49(8)
DOI:10.1029/2021GL097606
|
112. |
Juncong Li, Zhiping Wen, Xiuzhen Li, et al. Interdecadal Changes in the Relationship between Wintertime Surface Air Temperature over the Indo-China Peninsula and ENSO. Journal of Climate, 2022, 35(3): 975.
DOI:10.1175/JCLI-D-21-0477.1
|
113. |
Tianjiao Ma, Wen Chen, Hainan Gong, et al. Linkage of Strong Intraseasonal Events of the East Asian Winter Monsoon to the Tropical Convections over the Western Pacific. Remote Sensing, 2022, 14(13): 2993.
DOI:10.3390/rs14132993
|
114. |
Na Wen, Laurent Li, Yongsheng Hao. Response of East Asian Summer Precipitation to Intermediate SST Anomalies while El Niño Decays and Dependence on Type of Events. Journal of Climate, 2022, 35(12): 3845.
DOI:10.1175/JCLI-D-21-0335.1
|
115. |
Shuheng Lin, Song Yang, Shan He, et al. Attribution of the seasonality of atmospheric heating changes over the western tropical Pacific with a focus on the spring season. Climate Dynamics, 2022, 58(9-10): 2575.
DOI:10.1007/s00382-021-06020-3
|
116. |
Jing Zhu, Yueyue Yu, Zhaoyong Guan, et al. Dominant Coupling Mode of SST in Maritime Continental Region and East Asian Summer Monsoon Circulation. Journal of Geophysical Research: Atmospheres, 2022, 127(19)
DOI:10.1029/2022JD036739
|
117. |
Kai Yang, Wenju Cai, Gang Huang, et al. Increased variability of the western Pacific subtropical high under greenhouse warming. Proceedings of the National Academy of Sciences, 2022, 119(23)
DOI:10.1073/pnas.2120335119
|
118. |
Yang Yang, Liangying Zeng, Hailong Wang, et al. Dust pollution in China affected by different spatial and temporal types of El Niño. Atmospheric Chemistry and Physics, 2022, 22(22): 14489.
DOI:10.5194/acp-22-14489-2022
|
119. |
Zhongjing Jiang, Jing Li. Impact of eastern and central Pacific El Niño on lower tropospheric ozone in China. Atmospheric Chemistry and Physics, 2022, 22(11): 7273.
DOI:10.5194/acp-22-7273-2022
|
120. |
Wen Chen, Peng Hu, Jingliang Huangfu. Multi-scale climate variations and mechanisms of the onset and withdrawal of the South China Sea summer monsoon. Science China Earth Sciences, 2022, 65(6): 1030.
DOI:10.1007/s11430-021-9902-5
|
121. |
P. Darshana, Jasti S. Chowdary, Anant Parekh, et al. Relationship between the Indo-western Pacific Ocean capacitor mode and Indian summer monsoon rainfall in CMIP6 models. Climate Dynamics, 2022, 59(1-2): 393.
DOI:10.1007/s00382-021-06133-9
|
122. |
Peng Hu, Wen Chen, Shangfeng Chen, et al. The Weakening Relationship between ENSO and the South China Sea Summer Monsoon Onset in Recent Decades. Advances in Atmospheric Sciences, 2022, 39(3): 443.
DOI:10.1007/s00376-021-1208-6
|
123. |
Peng Hu, Wen Chen, Shangfeng Chen, et al. The Leading Mode and Factors for Coherent Variations among the Subsystems of Tropical Asian Summer Monsoon Onset. Journal of Climate, 2022, 35(5): 1597.
DOI:10.1175/JCLI-D-21-0101.1
|
124. |
Lin Chen, Gen Li, Bo Lu, et al. Two Approaches of the Spring North Atlantic Sea Surface Temperature Affecting the Following July Precipitation over Central China: The Tropical and Extratropical Pathways. Journal of Climate, 2022, 35(20): 2969.
DOI:10.1175/JCLI-D-21-1012.1
|
125. |
Junhu Zhao, Han Zhang, Jinqing Zuo, et al. Oceanic drivers and empirical prediction of interannual rainfall variability in late summer over Northeast China. Climate Dynamics, 2022, 58(3-4): 861.
DOI:10.1007/s00382-021-05945-z
|
126. |
Pascal Terray, K. P. Sooraj, Sébastien Masson, et al. Anatomy of the Indian Summer Monsoon and ENSO relationships in state-of-the-art CGCMs: role of the tropical Indian Ocean. Climate Dynamics, 2021, 56(1-2): 329.
DOI:10.1007/s00382-020-05484-z
|
127. |
Jae‐Heung Park, Soon‐Il An, Jong‐Seong Kug, et al. Mid‐latitude leading double‐dip La Niña. International Journal of Climatology, 2021, 41(S1)
DOI:10.1002/joc.6772
|
128. |
Lin Wang, Haishan Chen, Jasti S. Chowdary, et al. Editorial: The Asian Monsoon. Frontiers in Earth Science, 2021, 9
DOI:10.3389/feart.2021.748811
|
129. |
Y Fu, Z Lin, T Wang. Preconditions for CMIP6 models to reproduce the relationship between wintertime ENSO and subsequent East Asian summer rainfall. Climate Research, 2021, 84: 133.
DOI:10.3354/cr01663
|
130. |
Xiao Pan, Tim Li, Ying Sun, et al. Cause of Extreme Heavy and Persistent Rainfall over Yangtze River in Summer 2020. Advances in Atmospheric Sciences, 2021, 38(12): 1994.
DOI:10.1007/s00376-021-0433-3
|
131. |
Na Wen, Yongsheng Hao. Contrasting El Niño impacts on East Asian summer monsoon precipitation between its developing and decaying stages. International Journal of Climatology, 2021, 41(4): 2375.
DOI:10.1002/joc.6964
|
132. |
Meng Xu, Haiming Xu, Jing Ma, et al. Impact of Atlantic multidecadal oscillation on interannual relationship between ENSO and East Asian early summer monsoon. International Journal of Climatology, 2021, 41(4): 2860.
DOI:10.1002/joc.6994
|
133. |
Shujie Liu, Na Wen, Laurent Li. Dynamic and thermodynamic contributions to Northern China dryness in El Niño developing summer. International Journal of Climatology, 2021, 41(4): 2878.
DOI:10.1002/joc.6995
|
134. |
Fuqiang Cao, Tao Gao, Li Dan, et al. Contributions of natural climate variability on the trends of seasonal precipitation extremes over China. International Journal of Climatology, 2021, 41(11): 5226.
DOI:10.1002/joc.7126
|
135. |
Chengfei He, Zhengyu Liu, Bette L. Otto-Bliesner, et al. Deglacial variability of South China hydroclimate heavily contributed by autumn rainfall. Nature Communications, 2021, 12(1)
DOI:10.1038/s41467-021-26106-0
|
136. |
Qiao Liu, Tim Li, Weican Zhou. Impacts of Multi-Timescale Circulations on Meridional Moisture Transport. Journal of Climate, 2021.
DOI:10.1175/JCLI-D-20-0126.1
|
137. |
Yoo‐Geun Ham, Ji‐Gwang Kim, Jeong‐Gil Lee, et al. The Origin of Systematic Forecast Errors of Extreme 2020 East Asian Summer Monsoon Rainfall in GloSea5. Geophysical Research Letters, 2021, 48(16)
DOI:10.1029/2021GL094179
|
138. |
Ronald Kwan Kit Li, Chi Yung Tam, Ngar Cheung Lau. Effects of ENSO diversity and cold tongue bias on seasonal prediction of South China late spring rainfall. Climate Dynamics, 2021, 57(1-2): 577.
DOI:10.1007/s00382-021-05732-w
|
139. |
Linyuan Sun, Xiu-Qun Yang, Lingfeng Tao, et al. Changing Impact of ENSO Events on the Following Summer Rainfall in Eastern China since the 1950s. Journal of Climate, 2021, 34(20): 8105.
DOI:10.1175/JCLI-D-21-0018.1
|
140. |
Yuanyuan Guo, Ruijie Zhang, Zhiping Wen, et al. Understanding the role of SST anomaly in extreme rainfall of 2020 Meiyu season from an interdecadal perspective. Science China Earth Sciences, 2021, 64(10): 1619.
DOI:10.1007/s11430-020-9762-0
|
141. |
Shankai Tang, Shaobo Qiao, Taichen Feng, et al. Predictability of the mid‐summer surface air temperature over the Yangtze River valley in the National Centers for Environmental Prediction Climate Forecast System. International Journal of Climatology, 2021, 41(2): 811.
DOI:10.1002/joc.6670
|
142. |
Congxi Fang, Yu Liu, Qiufang Cai, et al. Why Does Extreme Rainfall Occur in Central China during the Summer of 2020 after a Weak El Niño?. Advances in Atmospheric Sciences, 2021, 38(12): 2067.
DOI:10.1007/s00376-021-1009-y
|
143. |
Tao Gao, Fuqiang Cao, Li Dan, et al. The precipitation variability of the wet and dry season at the interannual and interdecadal scales over eastern China (1901–2016): the impacts of the Pacific Ocean. Hydrology and Earth System Sciences, 2021, 25(3): 1467.
DOI:10.5194/hess-25-1467-2021
|
144. |
Yin Zhao, Tianjun Zhou. Interannual Variability of Precipitation Recycle Ratio Over the Tibetan Plateau. Journal of Geophysical Research: Atmospheres, 2021, 126(2)
DOI:10.1029/2020JD033733
|
145. |
Xieyuan Wang, Tim Li, Chao He. Impact of the mean state on El Niño induced western North Pacific anomalous anticyclone during its decaying summer in AMIP models. Journal of Climate, 2021.
DOI:10.1175/JCLI-D-20-0747.1
|
146. |
Shankai Tang, Shaobo Qiao, Taichen Feng, et al. Asymmetry of probabilistic prediction skills of the midsummer surface air temperature over the middle and lower reach of the Yangtze River valley. Climate Dynamics, 2021, 57(11-12): 3285.
DOI:10.1007/s00382-021-05866-x
|
147. |
Xiao Pan, Wei Wang, Tim Li, et al. Cause of an extreme warm and rainy winter inShanghaiin 2019. International Journal of Climatology, 2021, 41(9): 4684.
DOI:10.1002/joc.7094
|
148. |
Mingna Wu, Tianjun Zhou, Xiaolong Chen. The source of uncertainty in projecting the anomalous western North Pacific anticyclone during El Niño–decaying summers. Journal of Climate, 2021.
DOI:10.1175/JCLI-D-20-0904.1
|
149. |
Jin‐Hua Yu, Lijian Ou, Lin Chen, et al. Tropical cyclone genesis over the western North Pacific impacted by SST anomalies from other basins while El Niño decays. Quarterly Journal of the Royal Meteorological Society, 2021, 147(737): 2580.
DOI:10.1002/qj.4042
|
150. |
Yi-Chun Kuo, Yu-Heng Tseng. Influence of anomalous low-level circulation on the Kuroshio in the Luzon Strait during ENSO. Ocean Modelling, 2021, 159: 101759.
DOI:10.1016/j.ocemod.2021.101759
|
151. |
Tiantian Yu, Juan Feng, Wen Chen, et al. Persistence and breakdown of the western North Pacific anomalous anticyclone during the EP and CP El Niño decaying spring. Climate Dynamics, 2021, 57(11-12): 3529.
DOI:10.1007/s00382-021-05882-x
|
152. |
Hedi Ma, Ruili Wang, Anwei Lai, et al. Solar activity modulates the El Niño‐Southern Oscillation‐induced precipitation anomalies over southern China in early spring. International Journal of Climatology, 2021, 41(15): 6589.
DOI:10.1002/joc.7214
|
153. |
Xi Cao, Renguang Wu, Ying Sun, et al. Impact of North America snow cover on tropical cyclogenesis over the western North Pacific. Environmental Research Letters, 2021, 16(12): 124054.
DOI:10.1088/1748-9326/ac3bff
|
154. |
Juan Feng, Wen Chen. Roles of the North Indian Ocean SST and Tropical North Atlantic SST in the Latitudinal Extension of the Anomalous Western North Pacific Anticyclone during the El Niño Decaying Summer. Journal of Climate, 2021, 34(21): 8503.
DOI:10.1175/JCLI-D-20-0802.1
|
155. |
Yali Luo, Jisong Sun, Ying Li, et al. Science and Prediction of Heavy Rainfall over China: Research Progress since the Reform and Opening-Up of New China. Journal of Meteorological Research, 2020, 34(3): 427.
DOI:10.1007/s13351-020-0006-x
|
156. |
Fei Zheng, Hui Wang, Hao Luo, et al. Decadal change in ENSO related seasonal precipitation over southern China under influences of ENSO and its combination mode. Climate Dynamics, 2020, 54(3-4): 1973.
DOI:10.1007/s00382-019-05096-2
|
157. |
Tao Gao, Ming Luo, Ngar‐Cheung Lau, et al. Spatially Distinct Effects of Two El Niño Types on Summer Heat Extremes in China. Geophysical Research Letters, 2020, 47(6)
DOI:10.1029/2020GL086982
|
158. |
Wei Tan, Zexun Wei, Qiang Liu, et al. Different Influences of Two El Niño Types on Low-Level Atmospheric Circulation over the Subtropical Western North Pacific. Journal of Climate, 2020, 33(3): 825.
DOI:10.1175/JCLI-D-19-0223.1
|
159. |
Chung‐Wei Lee, Yu‐Heng Tseng, Chung‐Hsiung Sui, et al. Characteristics of the Prolonged El Niño Events During 1960–2020. Geophysical Research Letters, 2020, 47(12)
DOI:10.1029/2020GL088345
|
160. |
Xinyu Li, Riyu Lu. Breakdown of the Summertime Meridional Teleconnection Pattern over the Western North Pacific and East Asia since the Early 2000s. Journal of Climate, 2020, 33(19): 8487.
DOI:10.1175/JCLI-D-19-0746.1
|
161. |
Inmaculada Vega, Pedro Ribera, David Gallego. Characteristics of the Onset, Withdrawal, and Breaks of the Western North Pacific Summer Monsoon in the 1949–2014 Period. Journal of Climate, 2020, 33(17): 7371.
DOI:10.1175/JCLI-D-19-0734.1
|
162. |
Hong Li, Fanghua Xu, Yanluan Lin. The Impact of SST on the Zonal Variability of the Western Pacific Subtropical High in Boreal Summer. Journal of Geophysical Research: Atmospheres, 2020, 125(11)
DOI:10.1029/2019JD031720
|
163. |
Tao Feng, Xiu-Qun Yang, Xuguang Sun, et al. Reexamination of the Climatology and Variability of the Northwest Pacific Monsoon Trough Using a Daily Index. Journal of Climate, 2020, 33(14): 5919.
DOI:10.1175/JCLI-D-19-0459.1
|
164. |
Bin Wang, Xiao Luo, Jian Liu. How Robust is the Asian Precipitation–ENSO Relationship during the Industrial Warming Period (1901–2017)?. Journal of Climate, 2020, 33(7): 2779.
DOI:10.1175/JCLI-D-19-0630.1
|
165. |
Jia Liu, Yuqin Da, Tim Li, et al. Impact of ENSO on MJO Pattern Evolution over the Maritime Continent. Journal of Meteorological Research, 2020, 34(6): 1151.
DOI:10.1007/s13351-020-0046-2
|
166. |
Mingmei Xie, Chunzai Wang. Decadal Variability of the Anticyclone in the Western North Pacific. Journal of Climate, 2020, 33(20): 9031.
DOI:10.1175/JCLI-D-20-0008.1
|
167. |
Yuhao Wang, Chao He, Tim Li. Response of the anomalous western North Pacific anticyclone during El Niño mature winter to global warming. Climate Dynamics, 2020, 54(1-2): 727.
DOI:10.1007/s00382-019-05024-4
|
168. |
Xiao Pan, Tim Li, Mingcheng Chen. Change of El Niño and La Niña amplitude asymmetry around 1980. Climate Dynamics, 2020, 54(3-4): 1351.
DOI:10.1007/s00382-019-05062-y
|
169. |
Samantha Ferrett, Matthew Collins, Hong-Li Ren, et al. The Role of Tropical Mean-State Biases in Modeled Winter Northern Hemisphere El Niño Teleconnections. Journal of Climate, 2020, 33(11): 4751.
DOI:10.1175/JCLI-D-19-0668.1
|
170. |
Mourani Sinha, Somnath Jha, Paromita Chakraborty. Indian Ocean wind speed variability and global teleconnection patterns. Oceanologia, 2020, 62(2): 126.
DOI:10.1016/j.oceano.2019.10.002
|
171. |
Yuhao Wang, Chao He, Tim Li. Impact of Global Warming on the Western North Pacific Circulation Anomaly during Developing El Niño. Journal of Climate, 2020, 33(6): 2333.
DOI:10.1175/JCLI-D-19-0588.1
|
172. |
Fuan Xiao, Dongxiao Wang, Marco Y. T. Leung. Early and Extreme Warming in the South China Sea During 2015/2016: Role of an Unusual Indian Ocean Dipole Event. Geophysical Research Letters, 2020, 47(17)
DOI:10.1029/2020GL089936
|
173. |
Qi Feng Qian, Renguang Wu, Xiao Jing Jia. Persistence and Nonpersistence of East and Southeast Asian Rainfall Anomaly Pattern From Spring to Summer. Journal of Geophysical Research: Atmospheres, 2020, 125(18)
DOI:10.1029/2020JD033404
|
174. |
Peng Hu, Wen Chen, Shangfeng Chen, et al. Extremely Early Summer Monsoon Onset in the South China Sea in 2019 Following an El Niño Event. Monthly Weather Review, 2020, 148(5): 1877.
DOI:10.1175/MWR-D-19-0317.1
|
175. |
Jiang Yu, Tianjun Zhou, Zhihong Jiang. Interannual variability of the summer wind energy over China: A comparison of multiple datasets. Wind Energy, 2020, 23(8): 1726.
DOI:10.1002/we.2512
|
176. |
Jing Ma, Weibang He, Zhehan Chen, et al. The impact of north tropical Atlantic sea surface temperature anomalies in the ensuing spring of El Niño on the tropical Indian Ocean and Northwest Pacific. International Journal of Climatology, 2020, 40(11): 4978.
DOI:10.1002/joc.6500
|
177. |
Xiao Dong, Chao He. Zonal displacement of the Western North Pacific subtropical high from early to late summer. International Journal of Climatology, 2020, 40(11): 5029.
DOI:10.1002/joc.6508
|
178. |
Wei Wang, Fei Xin, Xiao Pan, et al. Seasonal and Sub-Seasonal Circulation Anomalies Associated with Persistent Rainy Days in 2018/2019 Winter in Shanghai, China. Journal of Meteorological Research, 2020, 34(2): 304.
DOI:10.1007/s13351-020-9163-1
|
179. |
Yi-Chun Kuo, Yu-Heng Tseng. Impact of ENSO on the South China Sea during ENSO decaying winter–spring modeled by a regional coupled model (a new mesoscale perspective). Ocean Modelling, 2020, 152: 101655.
DOI:10.1016/j.ocemod.2020.101655
|
180. |
Bo Lu, Hong-Li Ren. ENSO Features, Dynamics, and Teleconnections to East Asian Climate as Simulated in CAMS-CSM. Journal of Meteorological Research, 2019, 33(1): 46.
DOI:10.1007/s13351-019-8101-6
|
181. |
Chao He, Run Liu, Xuemei Wang, et al. How does El Niño-Southern Oscillation modulate the interannual variability of winter haze days over eastern China?. Science of The Total Environment, 2019, 651: 1892.
DOI:10.1016/j.scitotenv.2018.10.100
|
182. |
Jae-Heung Park, Tim Li. Interdecadal modulation of El Niño–tropical North Atlantic teleconnection by the Atlantic multi-decadal oscillation. Climate Dynamics, 2019, 52(9-10): 5345.
DOI:10.1007/s00382-018-4452-4
|
183. |
Yue Zhang, Wen Zhou, Marco Y. T. Leung. Phase relationship between summer and winter monsoons over the South China Sea: Indian Ocean and ENSO forcing. Climate Dynamics, 2019, 52(9-10): 5229.
DOI:10.1007/s00382-018-4440-8
|
184. |
Fuqiang Cao, Tao Gao, Li Dan, et al. Synoptic-scale atmospheric circulation anomalies associated with summertime daily precipitation extremes in the middle–lower reaches of the Yangtze River Basin. Climate Dynamics, 2019, 53(5-6): 3109.
DOI:10.1007/s00382-019-04687-3
|
185. |
Chao Wang, Bin Wang. Tropical cyclone predictability shaped by western Pacific subtropical high: integration of trans-basin sea surface temperature effects. Climate Dynamics, 2019, 53(5-6): 2697.
DOI:10.1007/s00382-019-04651-1
|
186. |
Cong Cai, Lijuan Wang, Junyu Wang, et al. The 10–20 d Low-Frequency Oscillation Characteristics of Summer Precipitation in Eastern China in the Decaying Year of CP ENSO. Atmosphere, 2019, 10(10): 616.
DOI:10.3390/atmos10100616
|
187. |
Minmin WU, Lei WANG. Enhanced correlation between ENSO and western North Pacific monsoon during boreal summer around the 1990s. Atmospheric and Oceanic Science Letters, 2019, 12(5): 376.
DOI:10.1080/16742834.2019.1641397
|
188. |
Xiaomeng Song, Renhe Zhang, Xinyao Rong. Influence of Intraseasonal Oscillation on the Asymmetric Decays of El Niño and La Niña. Advances in Atmospheric Sciences, 2019, 36(8): 779.
DOI:10.1007/s00376-019-9029-6
|
189. |
Lijuan Wang, Lin Wang, Yuyun Liu, et al. The Southwest China Flood of July 2018 and Its Causes. Atmosphere, 2019, 10(5): 247.
DOI:10.3390/atmos10050247
|
190. |
Haikun Zhao, Shaohua Chen, Philip J. Klotzbach. Recent Strengthening of the Relationship between the Western North Pacific Monsoon and Western North Pacific Tropical Cyclone Activity during the Boreal Summer. Journal of Climate, 2019, 32(23): 8283.
DOI:10.1175/JCLI-D-19-0016.1
|
191. |
Boqi LIU, Congwen ZHU, Jingzhi SU, et al. Record-Breaking Northward Shift of the Western North Pacific Subtropical High in July 2018. Journal of the Meteorological Society of Japan. Ser. II, 2019, 97(4): 913.
DOI:10.2151/jmsj.2019-047
|
192. |
Zhaoming Liang, Robert G. Fovell, Ying Liu. Observational Analysis of the Characteristics of the Synoptic Situation and Evolution of the Organized Warm-Sector Rainfall in the Coastal Region of South China in the Pre-Summer Rainy Season. Atmosphere, 2019, 10(11): 722.
DOI:10.3390/atmos10110722
|
193. |
Junhu Zhao, Jie Zhou, Kaiguo Xiong, et al. Relationship between Tropical Indian Ocean SSTA in Spring and Precipitation of Northeast China in Late Summer. Journal of Meteorological Research, 2019, 33(6): 1060.
DOI:10.1007/s13351-019-9026-9
|
194. |
Wenping Jiang, Gang Huang, Ping Huang, et al. Northwest Pacific Anticyclonic Anomalies during Post–El Niño Summers Determined by the Pace of El Niño Decay. Journal of Climate, 2019, 32(12): 3487.
DOI:10.1175/JCLI-D-18-0793.1
|
195. |
Yuhao Wang, Chao He, Tim Li. Decadal change in the relationship between East Asian spring circulation and ENSO: Is it modulated by Pacific Decadal Oscillation?. International Journal of Climatology, 2019, 39(1): 172.
DOI:10.1002/joc.5793
|
196. |
Bo Sun, Huixin Li, Botao Zhou. Interdecadal variation of Indian Ocean basin mode and the impact on Asian summer climate. Geophysical Research Letters, 2019, 46(21): 12388.
DOI:10.1029/2019GL085019
|
197. |
Ronglu Gao, Renhe Zhang, Min Wen, et al. Interdecadal changes in the asymmetric impacts of ENSO on wintertime rainfall over China and atmospheric circulations over western North Pacific. Climate Dynamics, 2019, 52(12): 7525.
DOI:10.1007/s00382-018-4282-4
|
198. |
Yi Fan, Ke Fan, Xiuhua Zhu, et al. El Niño–Related Summer Precipitation Anomalies in Southeast Asia Modulated by the Atlantic Multidecadal Oscillation. Journal of Climate, 2019, 32(22): 7971.
DOI:10.1175/JCLI-D-19-0049.1
|
199. |
Chunzai Wang. Three-ocean interactions and climate variability: a review and perspective. Climate Dynamics, 2019, 53(7-8): 5119.
DOI:10.1007/s00382-019-04930-x
|
200. |
Huaying Yu, Tim Li, Peng Liu. Influence of ENSO on frequency of wintertime fog days in Eastern China. Climate Dynamics, 2019, 52(9-10): 5099.
DOI:10.1007/s00382-018-4437-3
|
201. |
Ji‐Won Kim, Soon‐Il An. Western North Pacific anticyclone change associated with the El Niño–Indian Ocean Dipole coupling. International Journal of Climatology, 2019, 39(5): 2505.
DOI:10.1002/joc.5967
|
202. |
Peter Sherman, Meng Gao, Shaojie Song, et al. The Influence of Dynamics and Emissions Changes on China’s Wintertime Haze. Journal of Applied Meteorology and Climatology, 2019, 58(7): 1603.
DOI:10.1175/JAMC-D-19-0035.1
|
203. |
Wen Chen, Lin Wang, Juan Feng, et al. Recent Progress in Studies of the Variabilities and Mechanisms of the East Asian Monsoon in a Changing Climate. Advances in Atmospheric Sciences, 2019, 36(9): 887.
DOI:10.1007/s00376-019-8230-y
|
204. |
Peiqiang Xu, Lin Wang, Wen Chen, et al. Structural Changes in the Pacific–Japan Pattern in the Late 1990s. Journal of Climate, 2019, 32(2): 607.
DOI:10.1175/JCLI-D-18-0123.1
|
205. |
Bo Lu, Haiyan Li, Jie Wu, et al. Impact of El Niño and Southern Oscillation on the summer precipitation over Northwest China. Atmospheric Science Letters, 2019, 20(8)
DOI:10.1002/asl.928
|
206. |
Qi Liu, Tianjun Zhou, Huiting Mao, et al. Decadal Variations in the Relationship between the Western Pacific Subtropical High and Summer Heat Waves in East China. Journal of Climate, 2019, 32(5): 1627.
DOI:10.1175/JCLI-D-18-0093.1
|
207. |
Woosuk Choi, Kwang-Yul Kim. Summertime variability of the western North Pacific subtropical high and its synoptic influences on the East Asian weather. Scientific Reports, 2019, 9(1)
DOI:10.1038/s41598-019-44414-w
|
208. |
X Zhao, J Rao, J Mao. The salient differences in China summer rainfall response to ENSO: phases, intensities and flavors. Climate Research, 2019, 78(1): 51.
DOI:10.3354/cr01560
|
209. |
Chao He, Tianjun Zhou, Tim Li. Weakened Anomalous Western North Pacific Anticyclone during an El Niño–Decaying Summer under a Warmer Climate: Dominant Role of the Weakened Impact of the Tropical Indian Ocean on the Atmosphere. Journal of Climate, 2019, 32(1): 213.
DOI:10.1175/JCLI-D-18-0033.1
|
210. |
Jinqing Zuo, Weijing Li, Chenghu Sun, et al. Remote forcing of the northern tropical Atlantic SST anomalies on the western North Pacific anomalous anticyclone. Climate Dynamics, 2019, 52(5-6): 2837.
DOI:10.1007/s00382-018-4298-9
|
211. |
Qingping Cheng, Lu Gao, Xiaoan Zuo, et al. Statistical analyses of spatial and temporal variabilities in total, daytime, and nighttime precipitation indices and of extreme dry/wet association with large-scale circulations of Southwest China, 1961–2016. Atmospheric Research, 2019, 219: 166.
DOI:10.1016/j.atmosres.2018.12.033
|
212. |
Zhiqiang Li, Runyu Zhang, Kai Liu, et al. Late onsets of tropical cyclones in the decaying years of super El Niño events. Acta Oceanologica Sinica, 2019, 38(7): 67.
DOI:10.1007/s13131-019-1458-0
|
213. |
Mingcheng Chen, Tim Li, Xiaohui Wang. Asymmetry of Atmospheric Responses to Two-Type El Niño and La Niña over Northwest Pacific. Journal of Meteorological Research, 2019, 33(5): 826.
DOI:10.1007/s13351-019-9022-0
|
214. |
Mengyan Chen, Jin‐Yi Yu, Xin Wang, et al. The Changing Impact Mechanisms of a Diverse El Niño on the Western Pacific Subtropical High. Geophysical Research Letters, 2019, 46(2): 953.
DOI:10.1029/2018GL081131
|
215. |
Hong Li, Fanghua Xu, Jingru Sun, et al. Subtropical High Affects Interdecadal Variability of Tropical Cyclone Genesis in the South China Sea. Journal of Geophysical Research: Atmospheres, 2019, 124(12): 6379.
DOI:10.1029/2018JD029874
|
216. |
Yu Huang, Bo Wu, Tim Li, et al. Interdecadal Indian Ocean Basin Mode Driven by Interdecadal Pacific Oscillation: A Season-Dependent Growth Mechanism. Journal of Climate, 2019, 32(7): 2057.
DOI:10.1175/JCLI-D-18-0452.1
|
217. |
Tiantian Yu, Juan Feng, Wen Chen. Linear respective roles of El Niño–Southern Oscillation and East Asian winter monsoon in the formation of the western North Pacific anticyclone. International Journal of Climatology, 2019, 39(7): 3257.
DOI:10.1002/joc.6016
|
218. |
Lili Zeng, Raymond W. Schmitt, Laifang Li, et al. Forecast of summer precipitation in the Yangtze River Valley based on South China Sea springtime sea surface salinity. Climate Dynamics, 2019, 53(9-10): 5495.
DOI:10.1007/s00382-019-04878-y
|
219. |
Lijuan Chen, Wei Gu, Weijing Li. Why Is the East Asian Summer Monsoon Extremely Strong in 2018?—Collaborative Effects of SST and Snow Cover Anomalies. Journal of Meteorological Research, 2019, 33(4): 593.
DOI:10.1007/s13351-019-8200-4
|
220. |
Leishan Jiang, Tim Li. Relative roles of El Niño-induced extratropical and tropical forcing in generating Tropical North Atlantic (TNA) SST anomaly. Climate Dynamics, 2019, 53(7-8): 3791.
DOI:10.1007/s00382-019-04748-7
|
221. |
WeiNa Guan, HaiBo Hu, XueJuan Ren, et al. Subseasonal zonal variability of the western Pacific subtropical high in summer: climate impacts and underlying mechanisms. Climate Dynamics, 2019, 53(5-6): 3325.
DOI:10.1007/s00382-019-04705-4
|
222. |
Xiaohui Wang, Tim Li, Mingcheng Chen. Mechanism for asymmetric atmospheric responses in the western North Pacific to El Niño and La Niña. Climate Dynamics, 2019, 53(7-8): 3957.
DOI:10.1007/s00382-019-04767-4
|
223. |
Dong Chen, Ya Gao, Huijun Wang. Why Was the August Rainfall Pattern in the East Asia–Pacific Ocean Region in 2016 Different from That in 1998 under a Similar Preceding El Niño Background?. Journal of Climate, 2019, 32(18): 5785.
DOI:10.1175/JCLI-D-18-0589.1
|
224. |
Ming Xue, Xia Luo, Kefeng Zhu, et al. The Controlling Role of Boundary Layer Inertial Oscillations in Meiyu Frontal Precipitation and Its Diurnal Cycles Over China. Journal of Geophysical Research: Atmospheres, 2018, 123(10): 5090.
DOI:10.1029/2018JD028368
|
225. |
Chuan-Yang Wang, Shang-Ping Xie, Yu Kosaka. Indo-Western Pacific Climate Variability: ENSO Forcing and Internal Dynamics in a Tropical Pacific Pacemaker Simulation. Journal of Climate, 2018, 31(24): 10123.
DOI:10.1175/JCLI-D-18-0203.1
|
226. |
Xinyao Rong, Jian Li, Haoming Chen, et al. The CAMS Climate System Model and a Basic Evaluation of Its Climatology and Climate Variability Simulation. Journal of Meteorological Research, 2018, 32(6): 839.
DOI:10.1007/s13351-018-8058-x
|
227. |
Annalisa Cherchi, Tercio Ambrizzi, Swadhin Behera, et al. The Response of Subtropical Highs to Climate Change. Current Climate Change Reports, 2018, 4(4): 371.
DOI:10.1007/s40641-018-0114-1
|
228. |
Soon‐Il An, Ji‐Won Kim. ENSO Transition Asymmetry: Internal and External Causes and Intermodel Diversity. Geophysical Research Letters, 2018, 45(10): 5095.
DOI:10.1029/2018GL078476
|
229. |
Hainan Gong, Lin Wang, Wen Chen, et al. Diversity of the Pacific–Japan Pattern among CMIP5 Models: Role of SST Anomalies and Atmospheric Mean Flow. Journal of Climate, 2018, 31(17): 6857.
DOI:10.1175/JCLI-D-17-0541.1
|
230. |
Daili Qian, Zhaoyong Guan, Weiya Tang. Joint Impacts of SSTA in Tropical Pacific and Indian Oceans on Variations of the WPSH. Journal of Meteorological Research, 2018, 32(4): 548.
DOI:10.1007/s13351-018-7172-0
|
231. |
Soon-Il An, Chunzai Wang, Carlos R. Mechoso. Interacting Climates of Ocean Basins.
DOI:10.1017/9781108610995.003
|
232. |
Carlos R. Mechoso. Interacting Climates of Ocean Basins.
DOI:10.1017/9781108610995
|
233. |
I‐I Lin, Suzana J. Camargo, Christina M. Patricola, et al. El Niño Southern Oscillation in a Changing Climate. Geophysical Monograph Series,
DOI:10.1002/9781119548164.ch17
|