-
Abstract
With the Zebiak-Cane model, the present study investigates the role of model errors represented by the nonlinear forcing singular vector (NFSV) in the spring predictability barrier (SPB) phenomenon in ENSO prediction. The NFSV-related model errors are found to have the largest negative effect on the uncertainties of El Nio prediction and they can be classified into two types: the first is featured with a zonal dipolar pattern of SST anomalies (SSTA), with the western poles centered in the equatorial central-western Pacific exhibiting positive anomalies and the eastern poles in the equatorial eastern Pacific exhibiting negative anomalies; and the second is characterized by a pattern almost opposite to the first type. The first type of error tends to have the worst effects on El Nio growth-phase predictions, whereas the latter often yields the largest negative effects on decaying-phase predictions. The evolution of prediction errors caused by NFSV-related errors exhibits prominent seasonality, with the fastest error growth in spring and/or summer; hence, these errors result in a significant SPB related to El Nio events. The linear counterpart of NFSVs, the (linear) forcing singular vector (FSV), induces a less significant SPB because it contains smaller prediction errors. Random errors cannot generate an SPB for El Nio events. These results show that the occurrence of an SPB is related to the spatial patterns of tendency errors. The NFSV tendency errors cause the most significant SPB for El Nio events. In addition, NFSVs often concentrate these large value errors in a few areas within the equatorial eastern and central-western Pacific, which likely represent those areas sensitive to El Nio predictions associated with model errors. Meanwhile, these areas are also exactly consistent with the sensitive areas related to initial errors determined by previous studies. This implies that additional observations in the sensitive areas would not only improve the accuracy of the initial field but also promote the reduction of model errors to greatly improve ENSO forecasts.
-
-
Citation
DUAN Wansuo, ZHAO Peng, HU Junya, XU Hui. 2016: The Role of Nonlinear Forcing Singular Vector Tendency Error in Causing the “Spring Predictability Barrier” for ENSO. Journal of Meteorological Research, 30(6): 853-866. DOI: 10.1007/s13351-016-6011-4
DUAN Wansuo, ZHAO Peng, HU Junya, XU Hui. 2016: The Role of Nonlinear Forcing Singular Vector Tendency Error in Causing the “Spring Predictability Barrier” for ENSO. Journal of Meteorological Research, 30(6): 853-866. DOI: 10.1007/s13351-016-6011-4
|
DUAN Wansuo, ZHAO Peng, HU Junya, XU Hui. 2016: The Role of Nonlinear Forcing Singular Vector Tendency Error in Causing the “Spring Predictability Barrier” for ENSO. Journal of Meteorological Research, 30(6): 853-866. DOI: 10.1007/s13351-016-6011-4
DUAN Wansuo, ZHAO Peng, HU Junya, XU Hui. 2016: The Role of Nonlinear Forcing Singular Vector Tendency Error in Causing the “Spring Predictability Barrier” for ENSO. Journal of Meteorological Research, 30(6): 853-866. DOI: 10.1007/s13351-016-6011-4
|
Export: BibTex EndNote
Article Metrics
Article views:
PDF downloads:
Cited by: