What Controls Early or Late Onset of Tropical North Atlantic Hurricane Season?

+ Author Affiliations + Find other works by these authors
  • Corresponding author: LI Tim
Funds: 

Supported by the National (Key) Basic Research and Development (973) Program of China (2015CB453200), National Nat-ural Science Foundation of China (41475084), ONR Grant (N00014-16-12260), NRL Grant (N00173-13-1-G902), Jiangsu Natural Science Key Project (BK20150062), Jiangsu Shuang-Chuang Team (R2014SCT001), Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), Natural Science Foundation of the Higher Education Institutions of Jiangsu Province (14KJB170015), the Startup Foundation for Introducing Talent of NUIST (2013x018), and Civil Aviation Center Pro-gram (KDQC1302). The International Pacific Research Center is partially sponsored by the Japan Agency for Marine-Earth Science and Technology (JAMSTEC). This is SOEST contribution number 9619, IPRC contribution number 1186, and ESMC number 103.

PDF

  • The occurrence of first hurricane in early summer signifies the onset of an active Atlantic hurricane season. The interannual variation of this hurricane onset date is examined for the period 1979-2013. It is found that the onset date has a marked interannual variation. The standard deviation of the interannual variation of the onset day is 17.5 days, with the climatological mean onset happening on July 23. A diagnosis of tropical cyclone (TC) genesis potential index (GPI) indicates that the major difference between an early and a late onset group lies in the maximum potential intensity (MPI). A further diagnosis of the MPI shows that it is primarily controlled by the local SST anomaly (SSTA). Besides the SSTA, vertical shear and mid-tropospheric relative humidity anomalies also contribute significantly to the GPI difference between the early and late onset groups. It is found that the anomalous warm (cold) SST over the tropical Atlantic, while uncorrelated with the Nio3 index, persists from the preceding winter to concurrent summer in the early (late) onset group. The net surface heat flux anomaly always tends to damp the SSTA, which suggests that ocean dynamics may play a role in maintaining the SSTA in the tropical Atlantic. The SSTA pattern with a maximum center in northeastern tropical Atlantic appears responsible for generating the observed wind and moisture anomalies over the main TC development region. A further study is needed to understand the initiation mechanism of the SSTA in the Atlantic.
  • Avila, L. A., and R. J. Pasch, 1995:Atlantic tropical systems of 1993. Mon. Wea. Rev., 123, 887-896.
    Cai Ninghao, Xu Xin, Song Lili, et al., 2014:Dynamic impact of the vertical shear of gradient wind on the tropical cyclone boundary layer wind field. J. Me-teor. Res., 28, 127-138.
    Camargo, S. J., K. A. Emanuel, and A. H. Sobel, 2007:Use of a genesis potential index to diagnose ENSO effects on tropical cyclone genesis. J. Climate, 20, 4819-4834.
    Chu Huiyun and Wu Rongsheng, 2013:Environmen-tal influences on the intensity change of tropical cyclones in the western North Pacific. J. Meteor. Res., 27, 335-343.
    DeMaria, M., 1996:The effect of vertical shear on trop-ical cyclone intensity change. J. Atmos. Sci., 53, 2076-2088.
    DeMaria, M., J. A. Knaff, and B. H. Connell, 2001:A tropical cyclone genesis parameter for the tropical Atlantic. Wea. Forecasting, 16, 219-233.
    Emanuel, K. A., 1995:Sensitivity of tropical cyclones to surface exchange coefficients and a revised steady-state model incorporating eye dynamics. J. Atmos. Sci., 52, 3969-3976.
    Emanuel, K. A., 2000:A statistical analysis of tropical cyclone intensity. Mon. Wea. Rev., 128, 1139-1152. Emanuel, K. A., and D. S. Nolan, 2004:Tropical cyclone activity and global climate. Preprints, 26th Conf.
    on Hurricanes and Tropical Meteorology, Miami, FL, Amer. Meteor. Soc., 240-241.
    Frank, W. M., and E. A. Ritchie, 2001:Effects of vertical wind shear on the intensity and structure of numer-ically simulated hurricanes. Mon. Wea. Rev., 129, 2249-2269.
    Fu, B., T. Li, M. S. Peng, et al., 2007:Analysis of tropi-cal cyclogenesis in the western North Pacific for 2000 and 2001. Wea. Forecasting, 22, 763-780.
    Fu, B., M. S. Peng, T. Li, et al., 2012:Developing versus nondeveloping disturbances for tropical cyclone for-mation. Part Ⅱ:Western North Pacific. Mon. Wea. Rev., 140, 1067-1080.
    Ge, X. Y., T. Li, and X. Q. Zhou, 2007:Tropical cyclone energy dispersion under vertical shears. Geophys. Res. Lett., 34, L23807, doi: 10.1029/2007GL031867.
    Goldenberg, S. B., and L. J. Shapiro, 1996:Physical mechanisms for the association of El Nio and West African rainfall with Atlantic major hurricane acti-vity. J. Climate, 9, 1169-1187.
    Goldenberg, S. B., C. W. Landsea, A. M. Mestas-Nuez, et al., 2001:The recent increase in Atlantic hur-ricane activity:Causes and implications. Science, 293, 474-479.
    Gray, W. M., 1979:Hurricanes:Their formation, struc-ture and likely role in the tropical circulation. Me-teorology over the Tropical Oceans. James Glaisher House, 155-218.
    Gray, W. M., 1984:Atlantic seasonal hurricane frequency.
    Part I:El Nio and 30-mb quasi-biennial oscillation influences. Mon. Wea. Rev., 112, 1649-1668.
    Kanamitsu, M., W. Ebisuzaki, J. Woollen, et al., 2002:NCEP-DOE AMIP-Ⅱ reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 1631-1643.
    Klotzbach, P. J., 2011:El Nio-southern oscillation's impact on Atlantic basin hurricanes and U. S. land-falls. J. Climate, 24, 1252-1263.
    Knaff, J. A., S. A. Seseske, M. DeMaria, et al., 2004:On the influences of vertical wind shear on symmet-ric tropical cyclone structure derived from AMSU. Mon. Wea. Rev., 132, 2503-2510.
    Knapp, K. R., M. C. Kruk, D. H. Levinson, et al., 2010:The international best track archive for climate stewardship (IBTrACS):Unifying tropical cyclone data. Bull. Amer. Meteor. Soc., 91, 363-376.
    Kossin, J. P., 2008:Is the North Atlantic hurricane season getting longer? Geophys. Res. Lett., 35, L23705.
    Li, T., 2006:Origin of the summertime synoptic-scale wave train in the western North Pacific. J. Atmos. Sci., 63, 1093-1102.
    Li, T., 2012:Synoptic and climatic aspects of tropical cyclogenesis in western North Pacific. Cyclones:Formation, Triggers, and Control. Oouchi, K., and H. Fudeyasu, Eds. Nova Science Publishers, Inc., 61-94.
    Li, Z., W. D. Yu, T. Li, et al., 2013:Bimodal character of cyclone climatology in the Bay of Bengal mod-ulated by monsoon seasonal cycle. J. Climate, 26, 1033-1046.
    Liebmann, B., and C. Smith, 1996:Description of a com-plete (interpolated) outgoing longwave radiation dataset. Bull. Amer. Meteor. Soc., 77, 1275-1277.
    Lindzen, R. S., and S. Nigam, 1987:On the role of sea surface temperature gradients in forcing low-level winds and convergence in the tropics. J. Atmos. Sci., 44, 2418-2436.
    Peng, M. S., B. Fu, T. Li, et al., 2012:Developing versus nondeveloping disturbances for tropical cyclone for-mation. Part I:North Atlantic. Mon. Wea. Rev., 140, 1047-1066.
    Ramsay, H. A., and A. H. Sobel, 2011:Effects of relative and absolute sea surface temperature on tropical cyclone potential intensity using a single-column model. J. Climate, 24, 183-193.
    Reynolds, R. W., T. M. Smith, C. Y. Liu, et al., 2007:Daily high-resolution-blended analyses for sea sur-face temperature. J. Climate, 20, 5473-5496.
    Shapiro, L. J., 1987:Month-to-month variability of the Atlantic tropical circulation and its relationship to tropical storm formation. Mon. Wea. Rev., 115, 2598-2614.
    Wilson, R. M., 1999:Statistical aspects of major (in-tense) hurricanes in the Atlantic basin during the past 49 hurricane seasons (1950-1998):Implications for the current season. Geophys. Res. Lett., 26, 2957-2960.
    Wing, A. A., A. H. Sobel, and S. J. Camargo, 2007:Rela-tionship between the potential and actual intensities of tropical cyclones on interannual timescales. Geo-phys. Res. Lett., 34, L08810.
    Yu, L., X. Jin, and R. A. Weller, 2008:Multidecade Global Flux Datasets from the Objectively Analyzed Air-sea Fluxes (OAFlux) Project:Latent and Sen-sible Heat Fluxes, Ocean Evaporation, and Related Surface Meteorological Variables. OAFlux Project Technical Report OA-2008-01, Woods Hole Oceano-graphic Institution, Massachusetts, 64 pp.
  • Related Articles

  • Cited by

    Periodical cited type(3)

    1. Lukas F. Meldau, Bailiang Li, Cheryl McKenna Neuman, et al. Constant stress layer characteristics in simulated stratified air flows: Implications for aeolian transport. Aeolian Research, 2023, 63-65: 100888. DOI:10.1016/j.aeolia.2023.100888
    2. Ping Yue, Qiang Zhang, Runyuan Wang, et al. Turbulence intensity and turbulent kinetic energy parameters over a heterogeneous terrain of Loess Plateau. Advances in Atmospheric Sciences, 2015, 32(9): 1291. DOI:10.1007/s00376-015-4258-9
    3. Qiang Zhang, Tong Yao, Ping Yue. Development and test of a multifactorial parameterization scheme of land surface aerodynamic roughness length for flat land surfaces with short vegetation. Science China Earth Sciences, 2015. DOI:10.1007/s11430-015-5137-z

    Other cited types(0)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return