Uncertainty in the 2℃ Warming Threshold Related to Climate Sensitivity and Climate Feedback

+ Author Affiliations + Find other works by these authors
  • Corresponding author: CHEN Xiaolong, chenxiaolong@mail.iap.ac.cn
  • Funds:

    Supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA05110300) and National Natural Science Foundation of China (41330423).

  • doi: 10.1007/s13351-015-5036-4

PDF

  • Climate sensitivity is an important index that measures the relationship between the increase in green-house gases and the magnitude of global warming. Uncertainties in climate change projection and climate modeling are mostly related to the climate sensitivity. The climate sensitivities of coupled climate models determine the magnitudes of the projected global warming. In this paper, the authors thoroughly review the literature on climate sensitivity, and discuss issues related to climate feedback processes and the methods used in estimating the equilibrium climate sensitivity and transient climate response (TCR), including the TCR to cumulative CO2 emissions. After presenting a summary of the sources that affect the uncertainty of climate sensitivity, the impact of climate sensitivity on climate change projection is discussed by addressing the uncertainties in 2℃ warming. Challenges that call for further investigation in the research community, in particular the Chinese community, are discussed.
  • 加载中
  • [1]

    Andrews, T., J. M. Gregory, M. J. Webb, et al., 2012:Forcing, feedbacks and climate sensitivity in CMIP5 coupled atmosphere-ocean climate models. Geophys. Res. Lett., 39, L09712.
    [2]

    Arrhenius, S., 1896:On the influence of carbonic acid in the air upon the temperature of the ground. Philos. Mag., 41, 237-276.
    [3]

    Boucher, O., D. Randall, P. Artaxo, et al., 2013:Clouds and aerosols. Climate Change 2013:The Physical Science Basis. Stocker, T. F., D. H. Qin, G.-K. Plattner, et al., Eds., Cambridge University Press, Cambridge, United Kingdom and New York, USA, 1535 pp.
    [4]

    Calvin, K. V., J. A. Edmonds, B. Bond-Lamberty, et al., 2009:2.6:Limiting climate change to 450 ppm CO2 equivalent in the 21st century. Energ. Econ., 31, S107-S120.
    [5]

    Cess, R. D., 1975:Global climate change:An investiga-tion of atmospheric feedback mechanisms. Tellus, 27, 193-198.
    [6]

    Charney, J., A. Arakawa, D. J. Baker, et al., 1979:Car-bon dioxide and climate:A scientific assessment. Report of an Ad Hoc Study Group on Carbon Diox-ide and Climate. National Academy of Sciences Press, Washington D. C., 22 pp.
    [7]

    Chen Xiaolong, Zhou Tianjun, and Guo Zhun, 2014:Cli-mate sensitivities of two versions of FGOALS model to idealized radiative forcing. Sci. China (Earth Sci.), 57, 1363-1373.
    [8]

    Collins, M., R. Knutti, J. Arblaster, et al., 2013:Long-term climate change:Projections, commitments and irreversibility. Climate Change 2013:The Physical Science Basis. Stocker, T. F., D. H. Qin, G.-K. Plattner, et al., Eds., Cambridge University Press, Cambridge, United Kingdom and New York, USA, 1535 pp.
    [9]

    Colman, R., 2003:Seasonal contributions to climate feed-backs. Climate Dyn., 20, 825-841.
    [10]

    Cubasch, U., G. Meehl, G. J. Boer, et al., 2001:Pro-jections of future climate change. Climate Change 2001:The Scientific Basis. Houghton, J. T., Y. H. Ding, D. J. Griggs, et al., Eds., Cambridge Univer-sity Press, Cambridge, United Kingdom and New York, USA, 881 pp.
    [11]

    Danabasoglu, G., and P. R. Gent, 2009:Equilibrium cli-mate sensitivity:Is it accurate to use a slab ocean model? J. Climate, 22, 2494-2499.
    [12]

    Flato, G., J. Marotzke, B. Abiodun, et al., 2013:Evalu-ation of climate models. Climate Change 2013:The Physical Science Basis. Stocker, T. F., D. H. Qin, G.-K. Plattner, et al., Eds., Cambridge University Press, Cambridge, United Kingdom and New York, USA, 1535 pp.
    [13]

    Forster, P. M. F., and J. M. Gregory, 2006:The climate sensitivity and its components diagnosed from earth radiation budget data. J. Climate, 19, 39-52.
    [14]

    Forster, P., V. Ramaswamy, P. Artaxo, et al., 2007:Changes in atmospheric constituents and in radia-tive forcing. Climate Change 2007:The Physical Science Basis. Solomon, S., D. H. Qin, M. Manning, et al., Eds., Cambridge University Press, Cambridge, United Kingdom and New York, USA, 996 pp.
    [15]

    Gillett, N. P., V. K. Arora, D. Matthews, et al., 2013:Constraining the ratio of global warming to cumu-lative CO2 emissions using CMIP5 simulations. J. Climate, 26, 6844-6858.
    [16]

    Goodwin, P., R. G. Williams, and A. Ridgwell, 2015:Sensitivity of climate to cumulative carbon emis-sions due to compensation of ocean heat and carbon uptake. Nat. Geosci., 8, 29-34.
    [17]

    Gregory, J. M., R. J. Stouffer, S. C. B. Raper, et al., 2002:An observationally based estimate of the cli-mate sensitivity. J. Climate, 15, 3117-3121.
    [18]

    Gregory, J. M., W. J. Ingram, M. A. Palmer, et al., 2004:A new method for diagnosing radiative forc-ing and climate sensitivity. Geophys. Res. Lett., 31, L03205.
    [19]

    Gregory, J. M., and P. Forster, 2008:Transient climate response estimated from radiative forcing and ob-served temperature change. J. Geophys. Res., 113, D23105.
    [20]

    Han Bo, L Shihua, et al., 2015:Connection between atmospheric latent energy and energy fluxes simu-lated by nine CMIP5 models. J. Meteor. Res., 29, 412-431.
    [21]

    Hansen, J., A. Lacis, D. Rind, et al., 1984:Climate sensitivity:Analysis of feedback mechanisms. Cli-mate Processes and Climate Sensitivity. Hansen, J. E., and T. Takahashi, Eds., American Geophysical Union, Washington D. C., 130-163.
    [22]

    Hansen, J., M. Sato, R. Ruedy, et al., 2005:Efficacy of climate forcings. J. Geophys. Res., 110, D18104.
    [23]

    Held, I. M., and B. J. Soden, 2000:Water vapor feedback and global warming. Annu. Rev. Energy Environ., 25, 441-475.
    [24]

    Held, I. M., and K. M. Shell, 2012:Using relative humid-ity as a state variable in climate feedback analysis. J. Climate, 25, 2578-2582.
    [25]

    Ingram, W., 2013:A new way of quantifying GCM water vapour feedback. Climate Dyn., 40, 913-924.
    [26]

    IPCC, 1990:Climate Change:The IPCC Scientific As-sessment. Houghton, J. T., G. J. Jenkins, J. J.
    [27]

    Ephraums, Eds., Cambridge University Press, Cam-bridge, United Kingdom and New York, USA, 365 pp.
    [28]

    Jackson, C. S., M. K. Sen, G. Huerta, et al., 2008:Error reduction and convergence in climate prediction. J. Climate, 21, 6698-6709.
    [29]

    Jacob, D. J., R. Avissar, G. C. Bond, et al., 2005:Ra-diative Forcing of Climate Change:Expanding the Concept and Addressing Uncertainties. The Na-tional Academies Press, Washington D. C., 207 pp. Klocke, D., R. Pincus, and J. Quaas, 2011:On constrain-ing estimates of climate sensitivity with present-day observations through model weighting. J. Climate, 24, 6092-6099.
    [30]

    Li, C., J.-S. Von Storch, and J. Marotzke, 2013:Deep-ocean heat uptake and equilibrium climate response. Climate Dyn., 40, 1071-1086.
    [31]

    Ma Xiaoyan, Shi Guangyu, Guo Yufu, et al., 2005:Radia-tive forcing by greenhouse gases and sulfate aerosol. Acta Meteor. Sinica, 63, 41-48. (in Chinese).
    [32]

    Manabe, S., and R. F. Strickler, 1964:Thermal equilib-rium of the atmosphere with a convective adjust-ment. J. Atoms. Sci., 21, 361-385.
    [33]

    Manabe, S., and R. T. Wetherald, 1967:Thermal equi-librium of the atmosphere with a given distribution of relative humidity. J. Atoms. Sci., 24, 241-259.
    [34]

    Manabe, S., and R. T. Wetherald, 1975:The effects of doubling the CO2 concentration on the climate of a general circulation model. J. Atoms. Sci., 32, 3-15. Mann, M. E., 2009:Defining dangerous anthropogenic interference. Proc. Nat. Acad. Sci. USA, 106, 4065-4066.
    [35]

    Mann, M. E., 2014:False hope. Sci. Am., 310, 78-81. Masters, T., 2014:Observational estimate of climate sensitivity from changes in the rate of ocean heat uptake and comparison to CMIP5 models. Climate Dyn., 42, 2173-2181.
    [36]

    Matthews, H. D., N. P. Gillet, P. A. Stott, et al., 2009:The proportionality of global warming to cumulative carbon emissions. Nature, 459, 829-832.
    [37]

    Myhre, G., E. J. Highwood, K. P. Shine, et al., 1998:New estimates of radiative forcing due to well mixed greenhouse gases. Geophys. Res. Lett., 25, 2715-2718.
    [38]

    Myhre, G., D. Shindell, F.-M. Bron, et al., 2013:An-thropogenic and natural radiative forcing. Climate Change 2013:The Physical Science Basis. Stocker, T. F., Qin Dahe, G.-K. Plattner, et al., Eds., Cam-bridge University Press, Cambridge, United King-dom and New York, USA, 1535 pp.
    [39]

    Olson, R., R. Sriver, M. Geos, et al., 2012:A climate sensitivity estimate using Bayesian fusion of instru-mental observations and an Earth System model. J. Geophys. Res., 117, D04103.
    [40]

    Oppenheimer, M., M. Campos, R. Warren, et al., 2014:Emergent risks and key vulnerabilities. Climate Change 2014:Impacts, Adaptation, and Vulnera-bility. Part A:Global and Sectoral Aspects. Field, C. B., V. R. Barros, D. J. Dokken, et al., Eds., Cambridge University Press, Cambridge, United Kingdom and New York, USA, 1820 pp.
    [41]

    Pithan, F., and T. Mauritsen, 2014:Arctic amplification dominated by temperature feedbacks in contempo-rary climate models. Nat. Geosci., 7, 181-184.
    [42]

    Ramaswamy, V., O. Boucher, J. Haigh, et al., 2001:Ra-diative forcing of climate change. Climate Change 2001:The Scientific Basis. Houghton, J. T., Y. H. Ding, D. J. Griggs, et al., Eds., Cambridge Univer-sity Press, Cambridge, United Kingdom and New York, USA, 881 pp.
    [43]

    Randall, D. A., R. A. Wood, S. Bony, et al., 2007:Cli-mate models and their evaluation. Climate Change 2007:The Physical Science Basis. Solomon, S., D. H. Qin, M. Manning, et al., Eds., Cambridge Uni-versity Press, Cambridge, United Kingdom and New York, USA, 996 pp.
    [44]

    Roe, G., 2009:Feedbacks, timescales, and seeing red. Annu. Rev. Earth Planet Sci., 37, 93-115.
    [45]

    Roe, G. H., and M. B. Baker, 2007:Why is climate sen-sitivity so unpredictable? Science, 318, 629-632.
    [46]

    Roe, G. H., and K. C. Armour, 2011:How sensitive is cli-mate sensitivity? Geophys. Res. Lett., 38, L14708.
    [47]

    Rohling, E. J., A. Sluijs, H. A. Dijkstra, et al., 2012:Making sense of palaeoclimate sensitivity. Nature, 491, 683-691.
    [48]

    Rose, B. E. J., K. C. Armour, D. S. Battisti, et al., 2014:The dependence of transient climate sensitivity and radiative feedbacks on the spatial pattern of ocean heat uptake. Geophys. Res. Lett., 41, 1071-1078.
    [49]

    Schneider, S. H., S. Semenov, A. Patwardhan, et al., 2007:Assessing key vulnerabilities and the risk from climate change. Climate Change 2007:Im-pacts, Adaptation and Vulnerability. Solomon, S., D. H. Qin, M. Manning, et al., Eds., Cambridge University Press, Cambridge, United Kingdom and New York, USA, 976 pp.
    [50]

    Sherwood, S. C., S. Bony, and J.-L. Dufresne, 2014:Spread in model climate sensitivity traced to atmo-spheric convective mixing. Nature, 505, 37-42.
    [51]

    Shi Guangyu, 1991:Radiative forcing and greenhouse ef-fect due to the atmospheric trace gases. Sci. China (Ser. B), 35, 217-229.
    [52]

    Six, K. D., S. Kloster, T. Ilyina, et al., 2013:Global warming amplified by reduced sulphur fluxes as a result of ocean acidification. Nat. Climate Change, 3, 975-978.
    [53]

    Soden, B. J., and I. M. Held, 2006:An assessment of cli-mate feedbacks in coupled ocean-atmosphere mod-els. J. Climate, 19, 3354-3360.
    [54]

    Soden, B. J., I. M. Held, R. Colman, et al., 2008:Quan-tifying climate feedbacks using radiative kernels. J. Climate, 21, 3504-3520.
    [55]

    Stevens, B., and S. Bony, 2013:What are climate models missing? Science, 340, 1053-1054.
    [56]

    Stocker, T. F., D. H. Qin, G.-K. Plattner, et al., 2013:Technical summary. Climate Change 2013:The Physical Science Basis. Stocker, T. F., D. H. Qin, G.-K. Plattner, et al., Eds., Cambridge University Press, Cambridge, United Kingdom and New York, USA, 1535 pp.
    [57]

    Stouffer, R. J., and S. Manabe, 1999:Response of a coupled ocean-atmosphere model to increasing at-mospheric carbon dioxide:Sensitivity to the rate of increase. J. Climate, 12, 2224-2237.
    [58]

    Stouffer, R. J., J. Russell, and M. J. Spelman, 2006:Im-portance of oceanic heat uptake in transient climate change. Geophys. Res. Lett., 33, L17704.
    [59]

    Vial, J., J.-L. Dufresne, and S. Bony, 2013:On the inter-pretation of inter-model spread in CMIP5 climate sensitivity estimates. Climate Dyn., 41, 3339-3362.
    [60]

    Wang Mingxing, Zhang Renjian, and Zheng Xunhua, 2000:Sources and sinks of greenhouse gases. Cli-matic Environ. Res., 5, 75-79. (in Chinese).
    [61]

    Wang Shaowu, Luo Yong, Zhao Zongci, et al., 2012:Equi-librium climate sensitivity. Adv. Climate Change Res., 8, 232-234. (in Chinese).
    [62]

    Wang Shaowu, Luo Yong, Zhao Zongci, et al., 2013:The Sciences of Global Warming. China Meteorological Press, Beijing, 205 pp. (in Chinese).
    [63]

    Winton, M., K. Takahashi, and I. M. Held, 2010:Im-portance of ocean heat uptake efficacy to transient climate change. J. Climate, 23, 2333-2344.
    [64]

    Zeng, N., and J. Yoon, 2009:Expansion of the world's deserts due to vegetation-albedo feedback under global warming. Geophys. Res. Lett., 36, L17401.
    [65]

    Zhang Hua and Huang Jianping, 2014:Interpretation of the IPCC Fifth Assessment Report on anthro-pogenic and natural radiative forcing. Adv. Climate Change Res., 10, 40-44. (in Chinese).
    [66]

    Zhang, Y., and G. K. Vallis, 2013:Ocean heat uptake in eddying and non-eddying ocean circulation mod-els in a warming climate. J. Phys. Oceanogr., 43, 2211-2229.
    [67]

    Zhao Fengsheng and Shi Guangyu, 1995:A study of the transient and time-dependent greenhouse gas-induced climate change. Acta Geogra. Sinica, 50, 430-438. (in Chinese).
    [68]

    Zhou Tianjun, Song Fengfei, and Chen Xiaolong, 2013:Historical evolution of global and regional sur-face air temperature simulated by FGOALS-s2 and FGOALS-g2:How reliable are the model results? Adv. Atmos. Sci., 30, 638-657.
    [69]

    Zhou Tianjun, Wang Shaowu, and Zhang Xuehong, 1998:Proceeding of modelling studies on the stability and variability of the thermohaline circulation. Adv. Earth Sci., 13, 334-343. (in Chinese).
    [70]

    Zhou Tianjun, Wang Shaowu, and Zhang Xuehong, 2000:Comments on the role of thermohaline circulation in global climate system. Adv. Earth Sci., 15, 654-660. (in Chinese).
    [71]

    Zhou, T. J., and R. C. Yu, 2006:Twentieth-century surface air temperature over China and the globe simulated by coupled climate models. J. Climate, 19, 5843-5858.
    [72]

    Zhou Tianjun, Zou Liwei, Wu Bo, et al., 2014:Devel-opment of earth/climate system models in China:A review from the coupled model intercomparison project perspective. J. Meteor. Res., 28, 762-779.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Uncertainty in the 2℃ Warming Threshold Related to Climate Sensitivity and Climate Feedback

    Corresponding author: CHEN Xiaolong, chenxiaolong@mail.iap.ac.cn
  • 1. State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics,Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing 100029;
  • 2. University of the Chinese Academy of Sciences,Beijing 100049
Funds: Supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA05110300) and National Natural Science Foundation of China (41330423).

Abstract: Climate sensitivity is an important index that measures the relationship between the increase in green-house gases and the magnitude of global warming. Uncertainties in climate change projection and climate modeling are mostly related to the climate sensitivity. The climate sensitivities of coupled climate models determine the magnitudes of the projected global warming. In this paper, the authors thoroughly review the literature on climate sensitivity, and discuss issues related to climate feedback processes and the methods used in estimating the equilibrium climate sensitivity and transient climate response (TCR), including the TCR to cumulative CO2 emissions. After presenting a summary of the sources that affect the uncertainty of climate sensitivity, the impact of climate sensitivity on climate change projection is discussed by addressing the uncertainties in 2℃ warming. Challenges that call for further investigation in the research community, in particular the Chinese community, are discussed.

Reference (72)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return