A New Evaporation Duct Climatology over the South China Sea

+ Author Affiliations + Find other works by these authors
  • Corresponding author: YANG Kunde
Funds: 

Supported by the National Natural Science Foundation of China (11174235) and Fundamental Research Funds for the CentralUniversities (3102014JC02010301).

PDF

  • The climatology of evaporation ducts is important for shipborne electromagnetic system design and application. The evaporation duct climatology that is currently used for such applications was developed in the mid 1980s; this study presents efforts to improve it over the South China Sea (SCS) by using a stateof-the-art evaporation duct model and an improved meteorology dataset. This new climatology provides better evaporation duct height (EDH) data over the SCS, at a higher resolution of 0.3120.313. A comparison between the new climatology and the old one is performed. The monthly average EDH in the new climatology is between 10 and 12 m over the SCS, higher than that in the old climatology. The spatiotemporal characteristics of the evaporation duct over the SCS in different months are analyzed in detail, based on the new climatology.
  • Anderson, K. D., 1995: Radar detection of low-altitude targets in a maritime environment. IEEE Trans. Antennas Propag., 43, 609-613.
    Anderson, K. D., S. Doss-Hammel, D. Tsintikidis, et al., 2004: The RED experiment: An assessment of boundary layer effects in a trade winds regime on microwave and infrared propagation over the sea. Bull. Amer. Meteor. Soc., 85, 1355-1365.
    Babin, S. M., G. S. Young, and J. A. Carton, 1997: A new model of the oceanic evaporation duct. J. Appl. Meteor., 36, 193-204.
    Babin, S. M., and G. D. Dockery, 2002: LKB-based evaporation duct model comparison with buoy data. J. Appl. Meteor., 41, 434-446.
    Barrios, A. E., and W. L. Patterson, 2002: Advanced propagation model (APM) ver. 1.3.1 computer software configuration item (CSCI) documents, 1-10.
    Barrios, A. E., K. D. Anderson, and G. Lindem, 2006: Low altitude propagation effectsA validation study of the advanced propagation model (APM) for mobile radio applications. IEEE Trans. Antennas Propag., 54, 2869-2877.
    Cheng, Y. G., and W. Brutseaert, 2005: Flux-profile relationships for wind speed and temperature in the stable atmospheric boundary layer. Bound.-Layer Meteor., 114, 519-538.
    Cheng Yinhe, Zhou Shengqi, and Wang Dongxiao, 2013a: Review of the study of atmospheric ducts over the sea. Adv. Earth Sci., 28, 318-326. (in Chinese)
    Cheng Yinhe, Zhang Yusheng, Zhao Zhenwei, et al., 2013b: Analysis on the evaporation duct environ-ment near coast of the northern South China Sea in winter. Chinese J. Radio Sci., 28, 697-703. (in Chinese)
    Ding Juli, Fei Jianfang, Huang Xiaogang, et al., 2015a: Development and validation of an evaporation duct model. Part I: Model establishment and sensitivity experiments. J. Meteor. Res., 29, 467-481.
    Ding Juli, Fei Jianfang, Huang Xiaogang, et al., 2015b: Development and validation of an evaporation duct model. Part II: Evaluation and improvement of sta-bility functions. J. Meteor. Res., 29, 482-495.
    Frederickson, P. A., 2012: Improving the Characteriza-tion of the Environment for AREPS Electromagnetic Performance Predictions. Weather Impacts Decision Aids (WIDA) Workshop. Reno, NV, 6-8.
    Frederickson, P. A., K. L. Davidson, and A. K. Goroch, 2000: Operational evaporation duct model for MO-RIAH. Naval Postgraduate School Report, 10-25.
    Grachev, A. A., E. L. Andreas, C. W. Fairall, et al., 2007: SHEBA flux-profile relationships in the stable atmospheric boundary layer. Bound.-Layer Meteor.,124, 315-333.
    Hitney, H. V., and L. R. Hitney, 1990: Frequency diver-sity effects of evaporation duct propagation. IEEE Trans. Antennas Propag., 38, 1694-1700.
    Jiao Lin and Zhang Yonggang, 2009: An evaporation duct prediction model coupled with the MM5. Acta Meteor. Sinica, 67, 382-387. (in Chinese)
    Levy, M. F., and K. H. Craig, 1989: Case studies of transhorizon propagation: Reliability of predictions using radiosonde data. Sixth International Confer-ence on Antennas and Propagation. IEEE, Coven-try, 456-460.
    Li Yunbo, Zhang Yonggang, Tang Haichuan, et al., 2009: Oceanic evaporation duct diagnosis model based on air-sea flux algorithm. J. Appl. Meteor. Sci., 20, 628-633. (in Chinese)
    Liu, W. T., K. B. Katsaros, and J. A. Businger, 1979: Bulk parameterization of air-sea exchanges of heat and water vapor including the molecular constraints at the interface. J. Atmos. Sci., 36, 1722-1735.
    Musson-Genon, G. L., S. Gauthier, and E. Bruth, 1992: A simple method to determine evaporation duct height in the sea surface boundary layer. Radio Sci., 27, 635-644.
    Newton, D. A., 2003: COAMPS modeled surface layer refractivity in the roughness and evaporation duct experiment 2001. Naval Postgraduate Dissertation, 23 pp.
    Paulus, P. A., 1985: Practical application of an evapora-tion duct model. Radio Sci., 20, 887-896.
    Pons, J., S. C. Reising, S. Padmanabhan, et al., 2003: Passive polarimetric remote sensing of the ocean sur-face during the Rough Evaporation Duct experiment (RED 2001). 2003 IEEE International Geoscience and Remote Sensing Symposium. IEEE, Toulouse, 2732-2734.
    Saha, S., S. Moorthi, H. L. Pan, et al., 2010: The NCEP climate forecast system reanalysis. Bull. Amer. Meteor. Soc., 91, 1015-1057.
    Space and Naval Warfare Systems Center, 2006: User's manual (UM) for Advanced Refractive Effects Pre-diction System Version 3.6, 285 pp.
    Twigg, K. L., 2007: A smart climatology of evaporation duct height and surface radar propagation in the Indian Ocean. Ph. D. dissertation, Naval Postgrad-uate School, 26 pp.
    Wash, C. H., and K. L. Davidson, 1994: Remote mea-surements and coastal atmospheric refraction. Geo-science and Remote Sensing Symposium. IEEE, Pasadena, 397-401.
    Woods, G. S., A. Ruxton, C. Huddlestone-Holmes, et al., 2009: High-capacity, long-range, over ocean mi-crowave link using the evaporation duct. IEEE J. Oceanic Eng., 34, 323-330.
    Yao Zhanyu, Zhao Bolin, Li Wanbiao, et al., 2000: The analysis on charateristics of atmospheric duct and its effects on the propagation of eletromagnetic wave. Acta Meteor. Sinica, 58, 605-616. (in Chinese)
    Yardim, C., P. Gerstoft, and W. S. Hodgkiss, 2008: Tracking refractivity from clutter using Kalman and particle filters. IEEE Trans. Antennas Propag., 56, 1058-1070.
    Zhao Xiaofeng, Wang Dongxiao, Huang Sixun, et al.,2013: Statistical estimations of atmospheric duct over the South China Sea and the tropical eastern Indian Ocean. Chin. Sci. Bull., 58, 2794-2797.
  • Related Articles

  • Cited by

    Periodical cited type(23)

    1. Ning Yang, Xiaohai Zou, Luyao Sun, et al. The non-uniformity characteristics of the evaporation duct in the South China Sea based on CLDAS data. Frontiers in Marine Science, 2024, 10 DOI:10.3389/fmars.2023.1326975
    2. Yingxue Cui, Tong Hu, Ke Qi, et al. Research on Optimization Method of Evaporation Duct Prediction Model. Mathematics, 2024, 12(2): 205. DOI:10.3390/math12020205
    3. Qi Zhang, Shuwen Wang, Yang Shi, et al. Measurements and Analysis of Maritime Wireless Channel at 8 GHz in the South China Sea Region. IEEE Transactions on Antennas and Propagation, 2023, 71(3): 2674. DOI:10.1109/TAP.2022.3209664
    4. Shuwen Wang, Kunde Yang, Yang Shi, et al. Long-term over-the-horizon microwave channel measurements and statistical analysis in evaporation ducts over the Yellow Sea. Frontiers in Marine Science, 2023, 10 DOI:10.3389/fmars.2023.1077470
    5. Ning Yang, Debin Su, Tao Wang. Atmospheric Ducts and Their Electromagnetic Propagation Characteristics in the Northwestern South China Sea. Remote Sensing, 2023, 15(13): 3317. DOI:10.3390/rs15133317
    6. Shuwen Wang, Kunde Yang, Yang Shi, et al. Prediction of Over-the-Horizon Electromagnetic Wave Propagation in Evaporation Ducts Based on the Gated Recurrent Unit Network Model. IEEE Transactions on Antennas and Propagation, 2023, 71(4): 3485. DOI:10.1109/TAP.2023.3240998
    7. Shuwen Wang, Kunde Yang, Yang Shi, et al. Impact of Evaporation Duct on Electromagnetic Wave Propagation During a Typhoon. Journal of Ocean University of China, 2022, 21(5): 1069. DOI:10.1007/s11802-022-4967-5
    8. Lang Huang, Xiaofeng Zhao, Yudi Liu, et al. The Diurnal Variation of the Evaporation Duct Height and Its Relationship With Environmental Variables in the South China Sea. IEEE Transactions on Antennas and Propagation, 2022, 70(11): 10865. DOI:10.1109/TAP.2022.3191160
    9. Cheng Yang, Jian Wang, Yafei Shi. A Multi-Dimensional Deep-Learning-Based Evaporation Duct Height Prediction Model Derived from MAGIC Data. Remote Sensing, 2022, 14(21): 5484. DOI:10.3390/rs14215484
    10. Jianguo Ma, Jian Wang, Cheng Yang. Long-Range Microwave Links Guided by Evaporation Ducts. IEEE Communications Magazine, 2022, 60(5): 68. DOI:10.1109/MCOM.002.00508
    11. Khurram Shabih Zaidi, Sadaf Hina, Muhammad Jawad, et al. Beyond the Horizon, Backhaul Connectivity for Offshore IoT Devices. Energies, 2021, 14(21): 6918. DOI:10.3390/en14216918
    12. Yinhe Cheng, Mengling Zha, Zhiwei You, et al. Duct climatology over the South China Sea based on European Center for Medium Range Weather Forecast reanalysis data. Journal of Atmospheric and Solar-Terrestrial Physics, 2021, 222: 105720. DOI:10.1016/j.jastp.2021.105720
    13. Fei Hong, Qi Zhang. Time Series Analysis of Evaporation Duct Height over South China Sea: A Stochastic Modeling Approach. Atmosphere, 2021, 12(12): 1663. DOI:10.3390/atmos12121663
    14. Bin Tian, Qianqian Liu, Jun Lu, et al. The influence of seasonal and nonreciprocal evaporation duct on electromagnetic wave propagation in the Gulf of Aden. Results in Physics, 2020, 18: 103181. DOI:10.1016/j.rinp.2020.103181
    15. Yang Shi, Qi Zhang, Shuwen Wang, et al. A Comprehensive Study on Maximum Wavelength of Electromagnetic Propagation in Different Evaporation Ducts. IEEE Access, 2019, 7: 82308. DOI:10.1109/ACCESS.2019.2923039
    16. Qi Zhang, Kunde Yang. Study on evaporation duct estimation from point‐to‐point propagation measurements. IET Science, Measurement & Technology, 2018, 12(4): 456. DOI:10.1049/iet-smt.2017.0342
    17. Khurram Shabih Zaidi, Varun Jeoti, Micheal Drieberg, et al. Fading Characteristics in Evaporation Duct: Fade Margin for a Wireless Link in the South China Sea. IEEE Access, 2018, 6: 11038. DOI:10.1109/ACCESS.2018.2810299
    18. Xidang Yan, Kunde Yang, Yuanliang Ma. Calculation Method for Evaporation Duct Profiles Based on Artificial Neural Network. IEEE Antennas and Wireless Propagation Letters, 2018, 17(12): 2274. DOI:10.1109/LAWP.2018.2873110
    19. Qi Zhang, Kunde Yang, Qiulong Yang. Statistical Analysis of the Quantified Relationship between Evaporation Duct and Oceanic Evaporation for Unstable Conditions. Journal of Atmospheric and Oceanic Technology, 2017, 34(11): 2489. DOI:10.1175/JTECH-D-17-0156.1
    20. Kunde Yang, Qi Zhang, Yang Shi. Interannual variability of the evaporation duct over the South China Sea and its relations with regional evaporation. Journal of Geophysical Research: Oceans, 2017, 122(8): 6698. DOI:10.1002/2017JC012683
    21. Qi Zhang, Kunde Yang, Yang Shi. Spatial and temporal variability of the evaporation duct in the Gulf of Aden. Tellus A: Dynamic Meteorology and Oceanography, 2016, 68(1): 29792. DOI:10.3402/tellusa.v68.29792
    22. Khurram Shabih Zaidi, Varun Jeoti, Micheal Drieberg, et al. Long-range mobile communication over sea utilizing evaporation duct. 2017 Progress in Electromagnetics Research Symposium - Fall (PIERS - FALL), DOI:10.1109/PIERS-FALL.2017.8293252
    23. Shuai Zhao, Meng Zhang, Qingjian Ni, et al. A Short-term Evaporation Duct Height Prediction Method Using EMD and Parameter Optimized SVR. 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC), DOI:10.1109/SMC42975.2020.9283040

    Other cited types(0)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return