Dust Aerosol Effects on Cirrus and Altocumulus Clouds in Northwest China

+ Author Affiliations + Find other works by these authors
  • Corresponding author: WANG Wencai
Funds: 

Supported by the National Natural Science Foundation of China (41505013, 41375032, and 41175026) and China PostdoctoralScience Fund (2014M552506).

PDF

  • Dust aerosol effects on the properties of cirrus and altocumulus cloud in Northwest China were studied for the period March-May 2007 by using the satellite data of Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO), Aqua, and CloudSat. Dusty clouds were defined as those mixed with dust aerosols or existing in dust aerosol conditions, while pure clouds were those in a dust-free environment. For dusty altocumulus clouds, the mean values of cloud optical depth (OPD), cloud liquid water path (LWP), cloud ice water path (IWP), cloud effective particle radius (Re), and cloud effective particle diameter (De) were 6.40, 40.23 g m-2, 100.70 g m-2, 8.76 m, and 40.72 m, respectively. For pure altocumulus clouds, the corresponding mean values were 9.28, 76.70 g m-2, 128.75 g m-2, 14.03 m, and 48.92 m, respectively. These results show a significant decrease of OPD, LWP, IWP, Re, and De of approximately 31%, 48%, 22%, 38%, and 17% because of the effects of dust aerosols. Moreover, the effects of dust aerosols on liquid-phase altocumulus clouds were greater than on ice-phase altocumulus clouds. Regarding dusty cirrus clouds, the mean values of OPD, IWP, and De were 5.11, 137.53 g m-2, and 60.44 m, respectively. In contrast, the mean values were 6.69, 156.17 g m-2, and 66.63 m, respectively, for pure cirrus clouds, with a 24% decrease in OPD, a 12% decrease in IWP, and a 9% decrease in De. These results indicate that dust aerosols can significantly change cloud properties, leading to a reduction of OPD, LWP, and effective particle size for both altocumulus and cirrus clouds in Northwest China.
  • Albrecht, B. A., 1989: Aerosols, cloud microphysics, and fractional cloudiness. Science, 245, 1227-1230.
    Andreae, M. Q., D. Rosenfeld, P. Artaxo, et al., 2004: Smoking rain clouds over the Amazon. Science, 303,1337-1342, doi: 10.1126/science.1092779.
    Chen, B., J. Huang, P. Minnis, et al., 2010: Detection of dust aerosol by combining CALIPSO active li-dar and passive IIR measurements. Atmos. Chem. Phys., 10, 4241-4251, doi: 10.5194/acp-10-4241-2010.
    Chen Bin, Zhang Peng, Zhang Beidou, et al., 2014: An overview of passive and active dust detection meth-ods using satellite measurements. J. Meteor. Res.,28, 1029-1040, doi: 10.1007/s13351-014-4032-4. Chen Qian, Chen Tianyu, and Zhang Hong, 2006: Esti-mates of precipitation efficiency and latent capacity of artificial precipitation over Northwest China using Aqua/CERES data retrieval of cloud parameters. Arid Meteor., 24, 1-8. (in Chinese)
    Chen Yonghang, Chen Yan, Huang Jianping, et al., 2007: Distribution and variation trend of cloud over north-western China. Plateau Meteor., 26, 741-748. (in Chinese)
    DeMott, P. J., D. J. Cziczo, A. J. Prenni, et al., 2003: Measurements of the concentration and composition of nuclei for cirrus formation. Proc. Nat. Acad. Sci. USA, 100, 14655-14660.
    Ding Xiaodong, Huang Jianping, Li Jiming, et al., 2012: Study on cloud vertical structure feature over North-west China based on active satellite remote sensing and its influence on precipitation enhancement. Arid Meteor., 30, 529-538. (in Chinese)
    Fan, J. W., L. Ruby Leung, Z. Q. Li, et al., 2012: Aerosol impacts on clouds and precipitation in eastern China: Results from bin and bulk micro-physics. J. Geophys. Res., 117, D00K36, doi: 10.1029/2011JD016537.
    Fu, P. J., J. P. Huang, C. W. Li, et al., 2008: The proper-ties of dust aerosol and reducing tendency of the dust storms in Northwest China. Atmos. Environ., 42, 5896-5904, doi: 10.1016/j.atmosenv.2008.03.041.
    Gong, S. L., X. Y. Zhang, T. L. Zhao, et al., 2003: Characterization of soil dust aerosol in China and its
    transport and distribution during 2001 ACE-Asia. Part II: Model simulation and validation. J. Geo-phys. Res., 108, 4262, doi: 10.1029/2002JD002633.
    Hallett, J., 1996: Freeze frame. Science, 36, 22-26.
    Han, Z. W., J. W. Li, X. G. Xia, et al., 2012: Investi-gation of direct radiative effects of aerosols in dust storm season over East Asia with an online coupled regional climate-chemistry-aerosol model. Atmos. Environ., 54, 688-699.
    Han, Z. W., J. W. Li, W. D. Guo, et al., 2013: A study of dust radiative feedback on dust cycle and meteorology over East Asia by a coupled regional climate-chemistry-aerosol model. Atmos. Environ., 68, 54-63.
    Hu, Y. X., M. Vaughan, Z. Y. Liu, et al., 2007a: The depolarization-attenuated backscatter relation: CALIPSO lidar measurements vs. theory. Optics Express, 15, 5327-5332.
    Hu, Y. X., M. Vaughan, C. Mcclain, et al., 2007b: Global statistics of liquid water content and effective num-ber concentration of water clouds over ocean derived from combined CALIPSO and MODIS measure-ments. Atmos. Chem. Phys., 7, 3353-3359.
    Hu, Y. X., D. Winker, M. Vaughan, et al., 2009: CALIPSO/CALIOP cloud phase discrimination al-gorithm. J. Atmos. Oceanic Technol., 26, 2293-2309.
    Hu, Y. X., S. Rodier, K. M. Xu, et al., 2010: Occurrence, liquid water content, and fraction of supercooled water clouds from combined CALIOP/IIR/MODIS measurements. J. Geophys. Res., 115, D00H34, doi: 10.1029/2009JD012384.
    Huang, J. P., Y. J. Wang, T. H. Wang, et al., 2006a: Dusty cloud radiative forcing derived from satellite data for midlatitude regions of East Asia. Prog. Nat. Sci., 16, 1084-1089.
    Huang, J. P., P. Minnis, B. Lin, et al., 2006b: Possible influences of Asian dust aerosols on cloud proper-ties and radiative forcing observed from MODIS and CERES. Geophys. Res. Lett., 33, L06824, doi: 10.1029/2005GL024724.
    Huang, J. P., B. Lin, P. Minnis, et al., 2006c: Satellite-based assessment of possible dust aerosols semi-direct effect on cloud water path over East Asia. Geophys. Res. Lett., 33, L19802, doi: 10.1029/2006GL026561.
    Huang, J. P., P. Minnis, Y. H. Yi, et al., 2007a: Sum-mer dust aerosols detected from CALIPSO over the Tibetan Plateau. Geophys. Res. Lett., 34, L18805, doi: 10.1029/2007GL029938.
    Huang, J. P., J. M. Ge, and F. Z. Weng, 2007b: Detection of Asia dust storms using multisensor satellite mea-surements. Remote Sens. Environ., 110, 186-191.
    Huang, J. P., P. Minnis, B. Chen, et al., 2008: Long-range transport and vertical structure of Asian dust from CALIPSO and surface. J. Geophys. Res., 113, D23212, doi: 10.1029/2008JD010620.
    Huang, J. P., Q. Fu, J. Su, et al., 2009: Taklimakan dust aerosol radiative heating derived from CALIPSO ob-servations using the Fu-Liou radiation model with CERES constraints. Atmos. Chem. Phys., 9, 4011-4021.
    Huang, J. P., P. Minnis, H. Yan, et al., 2010: Dust aerosol effect on semi-arid climate over Northwest China de-tected from A-Train satellite measurements. Atmos. Chem. Phys., 10, 6863-6872.
    Huang, J. P., T. H. Wang, W. C. Wang, et al., 2014: Climate effects of dust aerosols over East Asian arid and semiarid regions. J. Geophys. Res., 119, 11398-11416.
    Huang, Z. W., J. P. Huang, J. R. Bi, et al., 2010: Dust aerosol vertical structure measurements using three MPL lidars during 2008 China-U.S. joint dust field experiment. J. Geophys. Res., 115, D00K15, doi: 10.1029/2009JD013273.
    Jin, H. C., and S. L. Nasiri, 2014: Evaluation of AIRS cloud-thermodynamic-phase determination with CALIPSO. J. Appl. Meteor. Climatol., 53, 1012-1027, doi: 10.1175/JAMC-D-13-0137.1.
    Jin, H. C., Y. H. Yi, S. L. Nasiri, et al., 2015: Im-pacts of Asian dust on the determination of cloud thermodynamic phase from satellite observations. Environ. Res. Lett., 10, 034006, doi: 10.1088/1748-9326/10/3/034006.
    Kawamoto, K., T. Nakajima, D. Streets, et al., 2004: Examining the aerosol indirect effect over China us-ing an SO2 emission inventory. Atmos. Res., 72, 353-363, doi: 10.1016/j.atmosres.
    Li, J., Y. Hu, J. Huang, et al., 2011: A new method for retrieval of the extinction coefficient of water clouds by using the tail of the CALIOP signal. Atmos. Chem. Phys., 11, 2903-2916.
    Li, Z. Q., F. Niu, J. W. Fan, et al., 2011: Long-termimpacts of aerosols on the vertical development of clouds and precipitation. Nature Geosci., 4, 888-894, doi: 10.1038/ngeo1313.
    Liu, D., Z. E. Wang, Z. Y. Liu, et al., 2008: A height resolved global view of dust aerosols from the first year CALIPSO lidar measurements. J. Geophys. Res., 113, D16214, doi: 10.1029/2007JD009776.
    Liu Jingjing, Chen Bin, and Huang Jianping, 2014: Discrimination and validation of clouds and dust aerosol layers over the Sahara desert with combined CALIOP and IIR measurements. J. Meteor. Res., 28, 185-198, doi: 10.1007/s13351-014-3051-5.
    Liu, Z. Y., M. A. Vaughan, D. M. Winker, et al., 2004: Use of probability distribution functions for discrim-inating between cloud and aerosol in lidar backscat-ter data. J. Geophys. Res., 109, D15202, doi: 10.1029/2004JD004732.
    Liu, Z. Y., M. Vaughan, D. Winker, et al., 2009: The CALIPSO lidar cloud and aerosol discrimination: Version 2 algorithm and initial assessment of perfor-mance. J. Atmos. Ocean. Technol., 26, 1198-1213.
    Mahowald, N. M., and M. L. Kiehl, 2003: Mineral aerosol and cloud interactions. Geophys. Res. Lett., 30, 1475, doi: 10.1029/2002GL016762.
    Manabe, S., and R. F. Strickler, 1964: Thermal equilib-rium of the atmosphere with a convective adjust-ment. J. Atmos. Sci., 21, 361-385.
    Mao Jietai, Zhang Junhua, and Wang Meihua, 2002: Summary comment on research of atmospheric aerosol in China. Acta Meteor. Sinica, 60, 625-634. (in Chinese)
    Min, Q., R. Li, B. Lin, et al., 2009: Evidence of min-eral dust altering cloud microphysics and precipi-tation. Atmos. Chem. Phys., 9, 3223-3231, doi: 10.5194/acp-9-3223-2009.
    Pruppacher, H. R., and J. D. Klett, 1997: Microphysics of Clouds and Precipitation. Kluwer Academic Pub-lishers, Dordrecht, the Netherlands, 714 pp.
    Rosenfeld, D., 1999: TRMM observed first direct ev-idence of smoke from forest fires inhibiting rain-fall. Geophys. Res. Lett., 26, 3105-3108, doi: 10.1029/1999GL006066.
    Rosenfeld, D., and W. L. Woodley, 2000: Convective clouds with sustained highly supercooled liquid water down to -37℃. Nature, 405, 440-442, doi: 10.1038/35013030.
    Rosenfeld, D., Y. Rudich, and R. Lahav, 2001: Desert dust suppressing precipitation: A possible desertifi-cation feedback loop. Proc. Nat. Acad. Sci. USA, 98, 5975-5980, doi: 10.1073/pnas.101122798.
    Rosenfeld, D., X. Yu, G. H. Liu, et al., 2011: Glaciation temperatures of convective clouds ingesting desert dust, air pollution and smoke from for-est fires. Geophys. Res. Lett., 38, L21804, doi: 10.1029/2011GL049423.
    Sassen, K., 2002: Indirect climate forcing over the west-ern US from Asian dust storms. Geophys. Res. Lett., 29, 103-1-103-4, doi: 10.1029/2001GL014051.
    Shi, G. Y., H. Wang, B. Wang, et al., 2005: Sensitivity experiments on the effects of optical properties of dust aerosols on their radiative forcing under clear sky condition. J. Meteor. Soc. Japan, 83A, 333-346, doi: 10.2151/jmsj.83A.333.
    Sokolik, I. N., and O. B. Toon, 1996: Direct radiative forcing by anthropogenic airborne mineral aerosols. Nature, 381, 681-683.
    Stith, J. L., V. Ramanathan, W. A. Cooper, et al., 2009: An overview of aircraft observations from the Pacific Dust Experiment campaign. J. Geophys. Res., 114, D05207, doi: 10.1029/2008jd010924.
    Su, J., J. P. Huang, Q. Fu, et al., 2008: Estimation of Asian dust aerosol effect on cloud radiation forcing using Fu-Liou radiative model and CERES measure-ments. Atmos. Chem. Phys., 8, 2763-2771.
    Tao, M. H., L. F. Chen, L. Su, et al., 2012: Satellite ob-servation of regional haze pollution over the North China Plain. J. Geophys. Res., 117, D12203, doi: 10.1029/2012JD017915.
    Tao, M. H., L. F. Chen, Z. F. Wang, et al., 2013: Satel-lite observation of abnormal yellow haze clouds over East China during summer agricultural burning sea-son. Atmos. Environ., 79, 632-640.
    Tao, W.-K., J.-P. Chen, Z. Q. Li, et al., 2012: Im-pact of aerosols on convective clouds and precipi-tation. Rev. Geophys., 50, RG2001, doi: 10.1029/2011RG000369.
    Twohy, C. H., S. M. Kreidenweis, T. Eidhammer, et al., 2009: Saharan dust particles nucleate droplets in eastern Atlantic clouds. Geophys. Res. Lett., 36, L01807, doi: 10.1029/2008gl035846.
    Twomey, S., 1977: The influence of pollution on the shortwave albedo of clouds. J. Atmos. Sci., 34, 1149-1152.
    Wang, H., G. Y. Shi, S. Y. Li, et al., 2006: The impacts of optical properties on radiative forcing due to dust aerosol. Adv. Atmos. Sci., 23, 431-441.
    Wang, H., X. Y. Zhang, S. L. Gong, et al., 2010: Ra-diative feedback of dust aerosols on the East Asian dust storms. J. Geophys. Res., 115, D23214, doi: 10.1029/2009JD013430.
    Wang, T. H., and J. P. Huang, 2009: A method for es-timating optical properties of dusty cloud. Chinese Optics Letters, 7, 368-372.
    Wang, W. C., J. P. Huang, P. Minnis, et al., 2010: Dusty cloud properties and radiative forcing over dust source and downwind regions derived from A-Train data during the Pacific Dust Experi-ment. J. Geophys. Res., 115, D00H35, doi: 10.1029/2010JD014109.
    Wang, W. C., J. P. Huang, T. Zhou, et al., 2013: Esti-mation of radiative effect of a heavy dust storm over Northwest China using Fu-Liou model and ground measurements. Journal of Quantitative Spectroscopy and Radiative Transfer, 122, 114-126.
    Wang, X., J. Huang, M. Ji, et al., 2008: Variability of East Asian dust events and their long-term trend. Atmos. Environ., 42, 3156-3165, doi: 10.1016/j.atmosenv.2007.07.046.
    Winker, D. M., W. H. Hunt, and C. Hostetler, 2004: Status and performance of the CALIOP lidar. Proc. SPIE, 5575, 8-15, doi: 10.1117/12.571955.
    Winker, D. M., J. Pelon, and M. Patrick McCormick, 2006: Initial results from CALIPSO. 23rd Interna-tional Laser Radar Conference. Nara, Japan, July 2006, Tokyo Metropolitan Univ., 991-994.
    Yin, Y., and L. Chen, 2007: The effects of heating by transported dust layers on cloud and precipitation: A numerical study. Atmos. Chem. Phys., 7, 3497-3505.
    Yin, Y., S. Wurzler, Z. Levin, et al., 2002: Interac-tions of mineral dust particles and clouds: Effects on precipitation and cloud optical properties. J. Geophys. Res., 107, AAC 19-1-AAC 19-14, doi: 10.1029/2001JD001544.
    Zhang, J. L., and S. A. Christopher, 2003: Long-wave radiative forcing of Saharan dust aerosols from Terra. Geophys. Res. Lett., 30, 2188, doi: 10.1029/2003GL018479.
    Zhang, J. L., J. R. Campbell, J. S. Reid, et al., 2011: Evaluating the impact of assimilating CALIOP-derived aerosol extinction profiles on a global mass transport model. Geophys. Res. Lett., 38, L14801, doi: 10.1029/2011GL047737.
    Zhang Xiaoye, 2007: Aerosol over China and their climate effect. Adv. Earth Sci., 22, 12-16. (in Chinese)
    Zhang, X. Y., R. Arimoto, and Z. S. An, 1997: Dust emission from Chinese desert sources linked to vari-ations in atmospheric circulation. J. Geophys. Res., 102, 28041-28047.
    Zhang, X. Y., S. L. Gong, Z. X. Shen, et al., 2003: Char-acterization of soil dust aerosol in China and its transport and distribution during 2001 ACE-Asia. Part 1: Network observations. J. Geophys. Res., 108, 4261, doi: 10.1029/2002JD002632.
  • Related Articles

  • Cited by

    Periodical cited type(23)

    1. Ning Yang, Xiaohai Zou, Luyao Sun, et al. The non-uniformity characteristics of the evaporation duct in the South China Sea based on CLDAS data. Frontiers in Marine Science, 2024, 10 DOI:10.3389/fmars.2023.1326975
    2. Yingxue Cui, Tong Hu, Ke Qi, et al. Research on Optimization Method of Evaporation Duct Prediction Model. Mathematics, 2024, 12(2): 205. DOI:10.3390/math12020205
    3. Qi Zhang, Shuwen Wang, Yang Shi, et al. Measurements and Analysis of Maritime Wireless Channel at 8 GHz in the South China Sea Region. IEEE Transactions on Antennas and Propagation, 2023, 71(3): 2674. DOI:10.1109/TAP.2022.3209664
    4. Shuwen Wang, Kunde Yang, Yang Shi, et al. Long-term over-the-horizon microwave channel measurements and statistical analysis in evaporation ducts over the Yellow Sea. Frontiers in Marine Science, 2023, 10 DOI:10.3389/fmars.2023.1077470
    5. Ning Yang, Debin Su, Tao Wang. Atmospheric Ducts and Their Electromagnetic Propagation Characteristics in the Northwestern South China Sea. Remote Sensing, 2023, 15(13): 3317. DOI:10.3390/rs15133317
    6. Shuwen Wang, Kunde Yang, Yang Shi, et al. Prediction of Over-the-Horizon Electromagnetic Wave Propagation in Evaporation Ducts Based on the Gated Recurrent Unit Network Model. IEEE Transactions on Antennas and Propagation, 2023, 71(4): 3485. DOI:10.1109/TAP.2023.3240998
    7. Shuwen Wang, Kunde Yang, Yang Shi, et al. Impact of Evaporation Duct on Electromagnetic Wave Propagation During a Typhoon. Journal of Ocean University of China, 2022, 21(5): 1069. DOI:10.1007/s11802-022-4967-5
    8. Lang Huang, Xiaofeng Zhao, Yudi Liu, et al. The Diurnal Variation of the Evaporation Duct Height and Its Relationship With Environmental Variables in the South China Sea. IEEE Transactions on Antennas and Propagation, 2022, 70(11): 10865. DOI:10.1109/TAP.2022.3191160
    9. Cheng Yang, Jian Wang, Yafei Shi. A Multi-Dimensional Deep-Learning-Based Evaporation Duct Height Prediction Model Derived from MAGIC Data. Remote Sensing, 2022, 14(21): 5484. DOI:10.3390/rs14215484
    10. Jianguo Ma, Jian Wang, Cheng Yang. Long-Range Microwave Links Guided by Evaporation Ducts. IEEE Communications Magazine, 2022, 60(5): 68. DOI:10.1109/MCOM.002.00508
    11. Khurram Shabih Zaidi, Sadaf Hina, Muhammad Jawad, et al. Beyond the Horizon, Backhaul Connectivity for Offshore IoT Devices. Energies, 2021, 14(21): 6918. DOI:10.3390/en14216918
    12. Yinhe Cheng, Mengling Zha, Zhiwei You, et al. Duct climatology over the South China Sea based on European Center for Medium Range Weather Forecast reanalysis data. Journal of Atmospheric and Solar-Terrestrial Physics, 2021, 222: 105720. DOI:10.1016/j.jastp.2021.105720
    13. Fei Hong, Qi Zhang. Time Series Analysis of Evaporation Duct Height over South China Sea: A Stochastic Modeling Approach. Atmosphere, 2021, 12(12): 1663. DOI:10.3390/atmos12121663
    14. Bin Tian, Qianqian Liu, Jun Lu, et al. The influence of seasonal and nonreciprocal evaporation duct on electromagnetic wave propagation in the Gulf of Aden. Results in Physics, 2020, 18: 103181. DOI:10.1016/j.rinp.2020.103181
    15. Yang Shi, Qi Zhang, Shuwen Wang, et al. A Comprehensive Study on Maximum Wavelength of Electromagnetic Propagation in Different Evaporation Ducts. IEEE Access, 2019, 7: 82308. DOI:10.1109/ACCESS.2019.2923039
    16. Qi Zhang, Kunde Yang. Study on evaporation duct estimation from point‐to‐point propagation measurements. IET Science, Measurement & Technology, 2018, 12(4): 456. DOI:10.1049/iet-smt.2017.0342
    17. Khurram Shabih Zaidi, Varun Jeoti, Micheal Drieberg, et al. Fading Characteristics in Evaporation Duct: Fade Margin for a Wireless Link in the South China Sea. IEEE Access, 2018, 6: 11038. DOI:10.1109/ACCESS.2018.2810299
    18. Xidang Yan, Kunde Yang, Yuanliang Ma. Calculation Method for Evaporation Duct Profiles Based on Artificial Neural Network. IEEE Antennas and Wireless Propagation Letters, 2018, 17(12): 2274. DOI:10.1109/LAWP.2018.2873110
    19. Qi Zhang, Kunde Yang, Qiulong Yang. Statistical Analysis of the Quantified Relationship between Evaporation Duct and Oceanic Evaporation for Unstable Conditions. Journal of Atmospheric and Oceanic Technology, 2017, 34(11): 2489. DOI:10.1175/JTECH-D-17-0156.1
    20. Kunde Yang, Qi Zhang, Yang Shi. Interannual variability of the evaporation duct over the South China Sea and its relations with regional evaporation. Journal of Geophysical Research: Oceans, 2017, 122(8): 6698. DOI:10.1002/2017JC012683
    21. Qi Zhang, Kunde Yang, Yang Shi. Spatial and temporal variability of the evaporation duct in the Gulf of Aden. Tellus A: Dynamic Meteorology and Oceanography, 2016, 68(1): 29792. DOI:10.3402/tellusa.v68.29792
    22. Khurram Shabih Zaidi, Varun Jeoti, Micheal Drieberg, et al. Long-range mobile communication over sea utilizing evaporation duct. 2017 Progress in Electromagnetics Research Symposium - Fall (PIERS - FALL), DOI:10.1109/PIERS-FALL.2017.8293252
    23. Shuai Zhao, Meng Zhang, Qingjian Ni, et al. A Short-term Evaporation Duct Height Prediction Method Using EMD and Parameter Optimized SVR. 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC), DOI:10.1109/SMC42975.2020.9283040

    Other cited types(0)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return