Dust Aerosol Effects on Cirrus and Altocumulus Clouds in Northwest China

+ Author Affiliations + Find other works by these authors
  • Corresponding author: WANG Wencai
Funds: 

Supported by the National Natural Science Foundation of China (41505013, 41375032, and 41175026) and China PostdoctoralScience Fund (2014M552506).

PDF

  • Dust aerosol effects on the properties of cirrus and altocumulus cloud in Northwest China were studied for the period March-May 2007 by using the satellite data of Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO), Aqua, and CloudSat. Dusty clouds were defined as those mixed with dust aerosols or existing in dust aerosol conditions, while pure clouds were those in a dust-free environment. For dusty altocumulus clouds, the mean values of cloud optical depth (OPD), cloud liquid water path (LWP), cloud ice water path (IWP), cloud effective particle radius (Re), and cloud effective particle diameter (De) were 6.40, 40.23 g m-2, 100.70 g m-2, 8.76 m, and 40.72 m, respectively. For pure altocumulus clouds, the corresponding mean values were 9.28, 76.70 g m-2, 128.75 g m-2, 14.03 m, and 48.92 m, respectively. These results show a significant decrease of OPD, LWP, IWP, Re, and De of approximately 31%, 48%, 22%, 38%, and 17% because of the effects of dust aerosols. Moreover, the effects of dust aerosols on liquid-phase altocumulus clouds were greater than on ice-phase altocumulus clouds. Regarding dusty cirrus clouds, the mean values of OPD, IWP, and De were 5.11, 137.53 g m-2, and 60.44 m, respectively. In contrast, the mean values were 6.69, 156.17 g m-2, and 66.63 m, respectively, for pure cirrus clouds, with a 24% decrease in OPD, a 12% decrease in IWP, and a 9% decrease in De. These results indicate that dust aerosols can significantly change cloud properties, leading to a reduction of OPD, LWP, and effective particle size for both altocumulus and cirrus clouds in Northwest China.
  • Albrecht, B. A., 1989: Aerosols, cloud microphysics, and fractional cloudiness. Science, 245, 1227-1230.
    Andreae, M. Q., D. Rosenfeld, P. Artaxo, et al., 2004: Smoking rain clouds over the Amazon. Science, 303,1337-1342, doi: 10.1126/science.1092779.
    Chen, B., J. Huang, P. Minnis, et al., 2010: Detection of dust aerosol by combining CALIPSO active li-dar and passive IIR measurements. Atmos. Chem. Phys., 10, 4241-4251, doi: 10.5194/acp-10-4241-2010.
    Chen Bin, Zhang Peng, Zhang Beidou, et al., 2014: An overview of passive and active dust detection meth-ods using satellite measurements. J. Meteor. Res.,28, 1029-1040, doi: 10.1007/s13351-014-4032-4. Chen Qian, Chen Tianyu, and Zhang Hong, 2006: Esti-mates of precipitation efficiency and latent capacity of artificial precipitation over Northwest China using Aqua/CERES data retrieval of cloud parameters. Arid Meteor., 24, 1-8. (in Chinese)
    Chen Yonghang, Chen Yan, Huang Jianping, et al., 2007: Distribution and variation trend of cloud over north-western China. Plateau Meteor., 26, 741-748. (in Chinese)
    DeMott, P. J., D. J. Cziczo, A. J. Prenni, et al., 2003: Measurements of the concentration and composition of nuclei for cirrus formation. Proc. Nat. Acad. Sci. USA, 100, 14655-14660.
    Ding Xiaodong, Huang Jianping, Li Jiming, et al., 2012: Study on cloud vertical structure feature over North-west China based on active satellite remote sensing and its influence on precipitation enhancement. Arid Meteor., 30, 529-538. (in Chinese)
    Fan, J. W., L. Ruby Leung, Z. Q. Li, et al., 2012: Aerosol impacts on clouds and precipitation in eastern China: Results from bin and bulk micro-physics. J. Geophys. Res., 117, D00K36, doi: 10.1029/2011JD016537.
    Fu, P. J., J. P. Huang, C. W. Li, et al., 2008: The proper-ties of dust aerosol and reducing tendency of the dust storms in Northwest China. Atmos. Environ., 42, 5896-5904, doi: 10.1016/j.atmosenv.2008.03.041.
    Gong, S. L., X. Y. Zhang, T. L. Zhao, et al., 2003: Characterization of soil dust aerosol in China and its
    transport and distribution during 2001 ACE-Asia. Part II: Model simulation and validation. J. Geo-phys. Res., 108, 4262, doi: 10.1029/2002JD002633.
    Hallett, J., 1996: Freeze frame. Science, 36, 22-26.
    Han, Z. W., J. W. Li, X. G. Xia, et al., 2012: Investi-gation of direct radiative effects of aerosols in dust storm season over East Asia with an online coupled regional climate-chemistry-aerosol model. Atmos. Environ., 54, 688-699.
    Han, Z. W., J. W. Li, W. D. Guo, et al., 2013: A study of dust radiative feedback on dust cycle and meteorology over East Asia by a coupled regional climate-chemistry-aerosol model. Atmos. Environ., 68, 54-63.
    Hu, Y. X., M. Vaughan, Z. Y. Liu, et al., 2007a: The depolarization-attenuated backscatter relation: CALIPSO lidar measurements vs. theory. Optics Express, 15, 5327-5332.
    Hu, Y. X., M. Vaughan, C. Mcclain, et al., 2007b: Global statistics of liquid water content and effective num-ber concentration of water clouds over ocean derived from combined CALIPSO and MODIS measure-ments. Atmos. Chem. Phys., 7, 3353-3359.
    Hu, Y. X., D. Winker, M. Vaughan, et al., 2009: CALIPSO/CALIOP cloud phase discrimination al-gorithm. J. Atmos. Oceanic Technol., 26, 2293-2309.
    Hu, Y. X., S. Rodier, K. M. Xu, et al., 2010: Occurrence, liquid water content, and fraction of supercooled water clouds from combined CALIOP/IIR/MODIS measurements. J. Geophys. Res., 115, D00H34, doi: 10.1029/2009JD012384.
    Huang, J. P., Y. J. Wang, T. H. Wang, et al., 2006a: Dusty cloud radiative forcing derived from satellite data for midlatitude regions of East Asia. Prog. Nat. Sci., 16, 1084-1089.
    Huang, J. P., P. Minnis, B. Lin, et al., 2006b: Possible influences of Asian dust aerosols on cloud proper-ties and radiative forcing observed from MODIS and CERES. Geophys. Res. Lett., 33, L06824, doi: 10.1029/2005GL024724.
    Huang, J. P., B. Lin, P. Minnis, et al., 2006c: Satellite-based assessment of possible dust aerosols semi-direct effect on cloud water path over East Asia. Geophys. Res. Lett., 33, L19802, doi: 10.1029/2006GL026561.
    Huang, J. P., P. Minnis, Y. H. Yi, et al., 2007a: Sum-mer dust aerosols detected from CALIPSO over the Tibetan Plateau. Geophys. Res. Lett., 34, L18805, doi: 10.1029/2007GL029938.
    Huang, J. P., J. M. Ge, and F. Z. Weng, 2007b: Detection of Asia dust storms using multisensor satellite mea-surements. Remote Sens. Environ., 110, 186-191.
    Huang, J. P., P. Minnis, B. Chen, et al., 2008: Long-range transport and vertical structure of Asian dust from CALIPSO and surface. J. Geophys. Res., 113, D23212, doi: 10.1029/2008JD010620.
    Huang, J. P., Q. Fu, J. Su, et al., 2009: Taklimakan dust aerosol radiative heating derived from CALIPSO ob-servations using the Fu-Liou radiation model with CERES constraints. Atmos. Chem. Phys., 9, 4011-4021.
    Huang, J. P., P. Minnis, H. Yan, et al., 2010: Dust aerosol effect on semi-arid climate over Northwest China de-tected from A-Train satellite measurements. Atmos. Chem. Phys., 10, 6863-6872.
    Huang, J. P., T. H. Wang, W. C. Wang, et al., 2014: Climate effects of dust aerosols over East Asian arid and semiarid regions. J. Geophys. Res., 119, 11398-11416.
    Huang, Z. W., J. P. Huang, J. R. Bi, et al., 2010: Dust aerosol vertical structure measurements using three MPL lidars during 2008 China-U.S. joint dust field experiment. J. Geophys. Res., 115, D00K15, doi: 10.1029/2009JD013273.
    Jin, H. C., and S. L. Nasiri, 2014: Evaluation of AIRS cloud-thermodynamic-phase determination with CALIPSO. J. Appl. Meteor. Climatol., 53, 1012-1027, doi: 10.1175/JAMC-D-13-0137.1.
    Jin, H. C., Y. H. Yi, S. L. Nasiri, et al., 2015: Im-pacts of Asian dust on the determination of cloud thermodynamic phase from satellite observations. Environ. Res. Lett., 10, 034006, doi: 10.1088/1748-9326/10/3/034006.
    Kawamoto, K., T. Nakajima, D. Streets, et al., 2004: Examining the aerosol indirect effect over China us-ing an SO2 emission inventory. Atmos. Res., 72, 353-363, doi: 10.1016/j.atmosres.
    Li, J., Y. Hu, J. Huang, et al., 2011: A new method for retrieval of the extinction coefficient of water clouds by using the tail of the CALIOP signal. Atmos. Chem. Phys., 11, 2903-2916.
    Li, Z. Q., F. Niu, J. W. Fan, et al., 2011: Long-termimpacts of aerosols on the vertical development of clouds and precipitation. Nature Geosci., 4, 888-894, doi: 10.1038/ngeo1313.
    Liu, D., Z. E. Wang, Z. Y. Liu, et al., 2008: A height resolved global view of dust aerosols from the first year CALIPSO lidar measurements. J. Geophys. Res., 113, D16214, doi: 10.1029/2007JD009776.
    Liu Jingjing, Chen Bin, and Huang Jianping, 2014: Discrimination and validation of clouds and dust aerosol layers over the Sahara desert with combined CALIOP and IIR measurements. J. Meteor. Res., 28, 185-198, doi: 10.1007/s13351-014-3051-5.
    Liu, Z. Y., M. A. Vaughan, D. M. Winker, et al., 2004: Use of probability distribution functions for discrim-inating between cloud and aerosol in lidar backscat-ter data. J. Geophys. Res., 109, D15202, doi: 10.1029/2004JD004732.
    Liu, Z. Y., M. Vaughan, D. Winker, et al., 2009: The CALIPSO lidar cloud and aerosol discrimination: Version 2 algorithm and initial assessment of perfor-mance. J. Atmos. Ocean. Technol., 26, 1198-1213.
    Mahowald, N. M., and M. L. Kiehl, 2003: Mineral aerosol and cloud interactions. Geophys. Res. Lett., 30, 1475, doi: 10.1029/2002GL016762.
    Manabe, S., and R. F. Strickler, 1964: Thermal equilib-rium of the atmosphere with a convective adjust-ment. J. Atmos. Sci., 21, 361-385.
    Mao Jietai, Zhang Junhua, and Wang Meihua, 2002: Summary comment on research of atmospheric aerosol in China. Acta Meteor. Sinica, 60, 625-634. (in Chinese)
    Min, Q., R. Li, B. Lin, et al., 2009: Evidence of min-eral dust altering cloud microphysics and precipi-tation. Atmos. Chem. Phys., 9, 3223-3231, doi: 10.5194/acp-9-3223-2009.
    Pruppacher, H. R., and J. D. Klett, 1997: Microphysics of Clouds and Precipitation. Kluwer Academic Pub-lishers, Dordrecht, the Netherlands, 714 pp.
    Rosenfeld, D., 1999: TRMM observed first direct ev-idence of smoke from forest fires inhibiting rain-fall. Geophys. Res. Lett., 26, 3105-3108, doi: 10.1029/1999GL006066.
    Rosenfeld, D., and W. L. Woodley, 2000: Convective clouds with sustained highly supercooled liquid water down to -37℃. Nature, 405, 440-442, doi: 10.1038/35013030.
    Rosenfeld, D., Y. Rudich, and R. Lahav, 2001: Desert dust suppressing precipitation: A possible desertifi-cation feedback loop. Proc. Nat. Acad. Sci. USA, 98, 5975-5980, doi: 10.1073/pnas.101122798.
    Rosenfeld, D., X. Yu, G. H. Liu, et al., 2011: Glaciation temperatures of convective clouds ingesting desert dust, air pollution and smoke from for-est fires. Geophys. Res. Lett., 38, L21804, doi: 10.1029/2011GL049423.
    Sassen, K., 2002: Indirect climate forcing over the west-ern US from Asian dust storms. Geophys. Res. Lett., 29, 103-1-103-4, doi: 10.1029/2001GL014051.
    Shi, G. Y., H. Wang, B. Wang, et al., 2005: Sensitivity experiments on the effects of optical properties of dust aerosols on their radiative forcing under clear sky condition. J. Meteor. Soc. Japan, 83A, 333-346, doi: 10.2151/jmsj.83A.333.
    Sokolik, I. N., and O. B. Toon, 1996: Direct radiative forcing by anthropogenic airborne mineral aerosols. Nature, 381, 681-683.
    Stith, J. L., V. Ramanathan, W. A. Cooper, et al., 2009: An overview of aircraft observations from the Pacific Dust Experiment campaign. J. Geophys. Res., 114, D05207, doi: 10.1029/2008jd010924.
    Su, J., J. P. Huang, Q. Fu, et al., 2008: Estimation of Asian dust aerosol effect on cloud radiation forcing using Fu-Liou radiative model and CERES measure-ments. Atmos. Chem. Phys., 8, 2763-2771.
    Tao, M. H., L. F. Chen, L. Su, et al., 2012: Satellite ob-servation of regional haze pollution over the North China Plain. J. Geophys. Res., 117, D12203, doi: 10.1029/2012JD017915.
    Tao, M. H., L. F. Chen, Z. F. Wang, et al., 2013: Satel-lite observation of abnormal yellow haze clouds over East China during summer agricultural burning sea-son. Atmos. Environ., 79, 632-640.
    Tao, W.-K., J.-P. Chen, Z. Q. Li, et al., 2012: Im-pact of aerosols on convective clouds and precipi-tation. Rev. Geophys., 50, RG2001, doi: 10.1029/2011RG000369.
    Twohy, C. H., S. M. Kreidenweis, T. Eidhammer, et al., 2009: Saharan dust particles nucleate droplets in eastern Atlantic clouds. Geophys. Res. Lett., 36, L01807, doi: 10.1029/2008gl035846.
    Twomey, S., 1977: The influence of pollution on the shortwave albedo of clouds. J. Atmos. Sci., 34, 1149-1152.
    Wang, H., G. Y. Shi, S. Y. Li, et al., 2006: The impacts of optical properties on radiative forcing due to dust aerosol. Adv. Atmos. Sci., 23, 431-441.
    Wang, H., X. Y. Zhang, S. L. Gong, et al., 2010: Ra-diative feedback of dust aerosols on the East Asian dust storms. J. Geophys. Res., 115, D23214, doi: 10.1029/2009JD013430.
    Wang, T. H., and J. P. Huang, 2009: A method for es-timating optical properties of dusty cloud. Chinese Optics Letters, 7, 368-372.
    Wang, W. C., J. P. Huang, P. Minnis, et al., 2010: Dusty cloud properties and radiative forcing over dust source and downwind regions derived from A-Train data during the Pacific Dust Experi-ment. J. Geophys. Res., 115, D00H35, doi: 10.1029/2010JD014109.
    Wang, W. C., J. P. Huang, T. Zhou, et al., 2013: Esti-mation of radiative effect of a heavy dust storm over Northwest China using Fu-Liou model and ground measurements. Journal of Quantitative Spectroscopy and Radiative Transfer, 122, 114-126.
    Wang, X., J. Huang, M. Ji, et al., 2008: Variability of East Asian dust events and their long-term trend. Atmos. Environ., 42, 3156-3165, doi: 10.1016/j.atmosenv.2007.07.046.
    Winker, D. M., W. H. Hunt, and C. Hostetler, 2004: Status and performance of the CALIOP lidar. Proc. SPIE, 5575, 8-15, doi: 10.1117/12.571955.
    Winker, D. M., J. Pelon, and M. Patrick McCormick, 2006: Initial results from CALIPSO. 23rd Interna-tional Laser Radar Conference. Nara, Japan, July 2006, Tokyo Metropolitan Univ., 991-994.
    Yin, Y., and L. Chen, 2007: The effects of heating by transported dust layers on cloud and precipitation: A numerical study. Atmos. Chem. Phys., 7, 3497-3505.
    Yin, Y., S. Wurzler, Z. Levin, et al., 2002: Interac-tions of mineral dust particles and clouds: Effects on precipitation and cloud optical properties. J. Geophys. Res., 107, AAC 19-1-AAC 19-14, doi: 10.1029/2001JD001544.
    Zhang, J. L., and S. A. Christopher, 2003: Long-wave radiative forcing of Saharan dust aerosols from Terra. Geophys. Res. Lett., 30, 2188, doi: 10.1029/2003GL018479.
    Zhang, J. L., J. R. Campbell, J. S. Reid, et al., 2011: Evaluating the impact of assimilating CALIOP-derived aerosol extinction profiles on a global mass transport model. Geophys. Res. Lett., 38, L14801, doi: 10.1029/2011GL047737.
    Zhang Xiaoye, 2007: Aerosol over China and their climate effect. Adv. Earth Sci., 22, 12-16. (in Chinese)
    Zhang, X. Y., R. Arimoto, and Z. S. An, 1997: Dust emission from Chinese desert sources linked to vari-ations in atmospheric circulation. J. Geophys. Res., 102, 28041-28047.
    Zhang, X. Y., S. L. Gong, Z. X. Shen, et al., 2003: Char-acterization of soil dust aerosol in China and its transport and distribution during 2001 ACE-Asia. Part 1: Network observations. J. Geophys. Res., 108, 4261, doi: 10.1029/2002JD002632.
  • Related Articles

  • Cited by

    Periodical cited type(30)

    1. Yundan Li, Wencai Wang, Yongqing Han, et al. Impact of COVID-19 emission reduction on dust aerosols and marine chlorophyll-a concentration. Science of The Total Environment, 2024, 918: 170493. DOI:10.1016/j.scitotenv.2024.170493
    2. Run Luo, Yuzhi Liu, Min Luo, et al. Dust effects on mixed-phase clouds and precipitation during a super dust storm over northern China. Atmospheric Environment, 2023, 313: 120081. DOI:10.1016/j.atmosenv.2023.120081
    3. Bin Chen, Li Dong, Jianping Huang, et al. Analysis of Long‐Term Trends in the Vertical Distribution and Transport Paths of Atmospheric Aerosols in Typical Regions of China Using 15 Years of CALIOP Data. Journal of Geophysical Research: Atmospheres, 2023, 128(14) DOI:10.1029/2022JD038066
    4. Axel Seifert, Vanessa Bachmann, Florian Filipitsch, et al. Aerosol–cloud–radiation interaction during Saharan dust episodes: the dusty cirrus puzzle. Atmospheric Chemistry and Physics, 2023, 23(11): 6409. DOI:10.5194/acp-23-6409-2023
    5. Yun He, Fan Yi, Fuchao Liu, et al. Ice Nucleation of Cirrus Clouds Related to the Transported Dust Layer Observed by Ground-Based Lidars over Wuhan, China. Advances in Atmospheric Sciences, 2022, 39(12): 2071. DOI:10.1007/s00376-021-1192-x
    6. Jiaxin Li, Yongxiang Han, Weijia Liu, et al. A new theoretical model deriving planetary boundary layer height in desert regions and its application on dust devil emissions. Science of The Total Environment, 2022, 814: 152378. DOI:10.1016/j.scitotenv.2021.152378
    7. Wencai Wang, Zhizheng He, Shangfei Hai, et al. Dust Aerosol’s Deposition and its Effects on Chlorophyll-A Concentrations Based on Multi-Sensor Satellite Observations and Model Simulations: A Case Study. Frontiers in Environmental Science, 2022, 10 DOI:10.3389/fenvs.2022.875365
    8. Peter Nojarov, Todor Arsov, Ivo Kalapov, et al. Aerosol direct effects on global solar shortwave irradiance at high mountainous station Musala, Bulgaria. Atmospheric Environment, 2021, 244: 117944. DOI:10.1016/j.atmosenv.2020.117944
    9. M. Bowen, R. F. Vincent. An assessment of the spatial extent of polar dust using satellite thermal data. Scientific Reports, 2021, 11(1) DOI:10.1038/s41598-020-79825-7
    10. Cunying Zheng, Zhongqin Li, Ping Zhou, et al. Physicochemical Impacts of Dust Storms on Aerosol and Glacier Meltwater on the Northern Margin of the Taklimakan Desert. Frontiers in Earth Science, 2021, 8 DOI:10.3389/feart.2020.527663
    11. Lin Pan, Yongxiang Han, Zhengqi Lu, et al. Integrative investigation of dust emissions by dust storms and dust devils in North Africa. Science of The Total Environment, 2021, 756: 144128. DOI:10.1016/j.scitotenv.2020.144128
    12. Lamei Mu, Jing Su, Xinyue Mo, et al. The Temporal-Spatial Variations and Potential Causes of Dust Events in Xinjiang Basin During 1960–2015. Frontiers in Environmental Science, 2021, 9 DOI:10.3389/fenvs.2021.727844
    13. Jianqi Zhao, Xiaoyan Ma, Shuoqiu Wu, et al. Dust emission and transport in Northwest China: WRF-Chem simulation and comparisons with multi-sensor observations. Atmospheric Research, 2020, 241: 104978. DOI:10.1016/j.atmosres.2020.104978
    14. Jun Liu, Dongyou Wu, Guangjing Liu, et al. Impact of Arctic amplification on declining spring dust events in East Asia. Climate Dynamics, 2020, 54(3-4): 1913. DOI:10.1007/s00382-019-05094-4
    15. Honglin Pan, Minzhong Wang, K. Raghavendra Kumar, et al. Seasonal and vertical distributions of aerosol type extinction coefficients with an emphasis on the impact of dust aerosol on the microphysical properties of cirrus over the Taklimakan Desert in Northwest China. Atmospheric Environment, 2019, 203: 216. DOI:10.1016/j.atmosenv.2019.02.004
    16. Rohit Chakraborty, Bijay Kumar Guha, Shamitaksha Talukdar, et al. Growth in mid-monsoon dry phases over the Indian region: prevailing influence of anthropogenic aerosols. Atmospheric Chemistry and Physics, 2019, 19(19): 12325. DOI:10.5194/acp-19-12325-2019
    17. Baiwan Pan, Zhendong Yao, Minzhong Wang, et al. Evaluation and utilization of CloudSat and CALIPSO data to analyze the impact of dust aerosol on the microphysical properties of cirrus over the Tibetan Plateau. Advances in Space Research, 2019, 63(1): 2. DOI:10.1016/j.asr.2018.07.004
    18. Shani Tiwari, Akhilesh Kumar, Vineet Pratap, et al. Assessment of two intense dust storm characteristics over Indo – Gangetic basin and their radiative impacts: A case study. Atmospheric Research, 2019, 228: 23. DOI:10.1016/j.atmosres.2019.05.011
    19. Jeffrey S. Reid, Derek J. Posselt, Kathleen Kaku, et al. Observations and hypotheses related to low to middle free tropospheric aerosol, water vapor and altocumulus cloud layers within convective weather regimes: a SEAC<sup>4</sup>RS case study. Atmospheric Chemistry and Physics, 2019, 19(17): 11413. DOI:10.5194/acp-19-11413-2019
    20. R. F. Vincent. The Effect of Arctic Dust on the Retrieval of Satellite Derived Sea and Ice Surface Temperatures. Scientific Reports, 2018, 8(1) DOI:10.1038/s41598-018-28024-6
    21. Wenjun Qu, Jun Wang, Xiaoye Zhang, et al. Effect of weakened diurnal evolution of atmospheric boundary layer to air pollution over eastern China associated to aerosol, cloud – ABL feedback. Atmospheric Environment, 2018, 185: 168. DOI:10.1016/j.atmosenv.2018.05.014
    22. Bin Zhao, Yu Gu, Kuo‐Nan Liou, et al. Type‐Dependent Responses of Ice Cloud Properties to Aerosols From Satellite Retrievals. Geophysical Research Letters, 2018, 45(7): 3297. DOI:10.1002/2018GL077261
    23. Yaoguo Tang, Yongxiang Han, Xiaoyan Ma, et al. Elevated heat pump effects of dust aerosol over Northwestern China during summer. Atmospheric Research, 2018, 203: 95. DOI:10.1016/j.atmosres.2017.12.004
    24. Yueqian Cao, Wu Zhang, Wenjing Wang. Spatial–temporal characteristics of haze and vertical distribution of aerosols over the Yangtze River Delta of China. Journal of Environmental Sciences, 2018, 66: 12. DOI:10.1016/j.jes.2017.05.039
    25. Satyendra K. Pandey, V. Vinoj, K. Landu, et al. Declining pre-monsoon dust loading over South Asia: Signature of a changing regional climate. Scientific Reports, 2017, 7(1) DOI:10.1038/s41598-017-16338-w
    26. Jiming Li, Qiaoyi Lv, Min Zhang, et al. Effects of atmospheric dynamics and aerosols on the fraction of supercooled water clouds. Atmospheric Chemistry and Physics, 2017, 17(3): 1847. DOI:10.5194/acp-17-1847-2017
    27. Wencai Wang, Lifang Sheng, Xu Dong, et al. Dust aerosol impact on the retrieval of cloud top height from satellite observations of CALIPSO, CloudSat and MODIS. Journal of Quantitative Spectroscopy and Radiative Transfer, 2017, 188: 132. DOI:10.1016/j.jqsrt.2016.03.034
    28. Qiong Liu, Yuan Wang, Zhongyu Kuang, et al. Vertical distributions of aerosol optical properties during haze and floating dust weather in Shanghai. Journal of Meteorological Research, 2016, 30(4): 598. DOI:10.1007/s13351-016-5092-4
    29. Zhongwei Huang, Jianping Huang, Tadahiro Hayasaka, et al. Short-cut transport path for Asian dust directly to the Arctic: a case study. Environmental Research Letters, 2015, 10(11): 114018. DOI:10.1088/1748-9326/10/11/114018
    30. Prashant Kumar Chauhan, Akhilesh Kumar, Vineet Pratap, et al. Atmospheric Remote Sensing. DOI:10.1016/B978-0-323-99262-6.00007-9

    Other cited types(0)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return