Impact of 4DVAR Assimilation of AIRS Total Column Ozone Observations on the Simulation of Hurricane Earl

PDF

  • The Atmospheric Infrared Sounder (AIRS) provides twice-daily global observations of brightness temperature, which can be used to retrieve the total column ozone with high spatial and temporal resolution. In order to apply the AIRS ozone data to numerical prediction of tropical cyclones, a four-dimensional variational (4DVAR) assimilation scheme on selected model levels is adopted and implemented in the mesoscale non-hydrostatic model MM5. Based on the correlation between total column ozone and potential vorticity (PV), the observation operator of each level is established and five levels with highest correlation coefficients are selected for the 4DVAR assimilation of the AIRS total column ozone observations. The results from the numerical experiments using the proposed assimilation scheme for Hurricane Earl show that the ozone data assimilation affects the PV distributions with more mesoscale information at high levels first and then influences those at middle and low levels through the so-called asymmetric penetration of PV anomalies. With the AIRS ozone data being assimilated, the warm core of Hurricane Earl is intensified, resulting in the improvement of other fields near the hurricane center. The track prediction is improved mainly due to adjustment of the steering flows in the assimilation experiment.
  • loading

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return