Evolution of Aerosol Vertical Distribution During Particulate Pollution Events in Shanghai

+ Author Affiliations + Find other works by these authors
  • Corresponding author: CHENG Tiantao
Funds: 

Supported by the National Science and Technology Support Programe of China (2014BAC16B01), National Natural Science Foundation of China (41475109, 21190053, and 21177025), Shanghai Science and Technology Commission of Shanghai Municipality (12DJ1400100 and 12DZ2260200), Jiangsu Collaborative Innovation Center for Climate Change, Priority Fields for Ph.D. Programs of Foundation of Ministry of Education of China (0110071130003), FP7 Project (AMIS, PIRSES-GA-2011), and Program for New Century Excellent Talents in University (NCET).

PDF

  • A set of micro pulse lidar (MPL) systems operating at 532 nm was used for ground-based observation of aerosols in Shanghai in 2011. Three typical particulate pollution events (e.g., haze) were examined to determine the evolution of aerosol vertical distribution and the planetary boundary layer (PBL) during these pollution episodes. The aerosol vertical extinction coeffcient (VEC) at any given measured altitude was prominently larger during haze periods than that before or after the associated event. Aerosols originating from various source regions exerted forcing to some extent on aerosol loading and vertical layering, leading to different aerosol vertical distribution structures. Aerosol VECs were always maximized near the surface owing to the potential influence of local pollutant emissions. Several peaks in aerosol VECs were found at altitudes above 1 km during the dustand bioburning-influenced haze events. Aerosol VECs decreased with increasing altitude during the local-polluted haze event, with a single maximum in the surface atmosphere. PM2.5 increased slowly while PBL and visibility decreased gradually in the early stages of haze events; subsequently, PM2.5 accumulated and was exacerbated until serious pollution bursts occurred in the middle and later stages. The results reveal that aerosols from different sources impact aerosol vertical distributions in the atmosphere and that the relationship between PBL and pollutant loadings may play an important role in the formation of pollution.
  • Beniston, M., J. P. Wolf, M. Beniston-Rebetez, et al., 1990: Use of lidar measurements and numerical models in air pollution research. J. Geophys. Res., 95, 9879-9894.
    Bergamo, A., A. M. Tafuro, S. Kinne, et al., 2008: Monthly-averaged anthropogenic aerosol direct radiative forcing over the Mediterranean based on AERONET aerosol properties. Atmos. Chem. Phys., 8, 6995-7014.
    Boers, R., E. W. Eloranta, and R. L. Coulter, 1984: Lidar observations of mixed layer dynamics: Tests of parameterized entrainment models of mixed layer growth rate. J. Climate Appl. Meteor., 23, 247-266.
    Boers, R., and E. W. Eloranta, 1986: Lidar measurements of the atmospheric entrainment zone and the potential temperature jump across the top of the mixed layer. Bound.-Layer Meteor., 34, 357-375.
    Brooks, I. M., 2003: Finding boundary layer top: Application of a wavelet covariance transform to lidar backscatter profiles. J. Atmos. Oceanic Technol., 20, 1092-1105.
    Campbell, J. R., D. L. Hlavka, J. D. Spinhirne, et al., 1998: Operational cloud boundary detection and analysis from micropulse lidar data. Tucson, Eighth ARM Science Team Meeting, 119-122.
    Campbell, J. R., D. L. Hlavka, E. J. Welton, et al., 2002: Full-time, eye-safe cloud and aerosol lidar observation at atmospheric radiation measurement program sites: Instruments and data processing. J. Atmos. Oceanic Technol., 19, 431-442.
    Charlson, R. J., J. Langner, H. Rodhe, et al., 1991: Perturbation of the Northern Hemisphere radiative balance by backscattering from anthropogenic sulfate aerosols. Tellus A, 43, 152-163.
    Che, H., G. Shi, A. Uchiyama, et al., 2008: Intercomparison between aerosol optical properties by a PREDE skyradiometer and CIMEL sunphotometer over Beijing, China. Atmos. Chem. Phys., 8, 3199-3214.
    Chen Weibo, H. Kuze, A. Uchiyama, et al., 2001: Oneyear observation of urban mixed layer characteristics at Tsukuba, Japan using a micro pulse lidar. Atmos. Environ., 35, 4273-4280.
    Chen Weinai, F. J. Tsai, C. C. K. Chou, et al., 2007: Optical properties of Asian dusts in the free atmosphere measured by Raman lidar at Taipei, Taiwan. Atmos. Environ., 41, 7698-7714.
    Chen Yonghang, Liu Qiong, Geng Fuhai, et al., 2012: Vertical distribution of optical and micro-physical properties of ambient aerosols during dry haze periods in Shanghai. Atmos. Environ., 50, 50-59.
    Christopher, S. A., J. Chou, Zhang Jianglong, et al., 2000: Shortwave direct radiative forcing of biomass burning aerosols estimated using VIRS and CERES data. Geophys. Res. Lett., 27, 2197-2200.
    Cohn, S. A., and W. M. Angevine, 2000: Boundary layer height and entrainment zone thickness measured by lidars and wind-profiling radars. J. Appl. Meteor., 39, 1233-1247.
    Deng Xuejiao, Tie Xuexi, Wu Dui, et al., 2008: Longterm trend of visibility and its characterizations in the Pearl River Delta (PRD) region, China. Atmos. Environ., 42, 1424-1435.
    Draxler, R. R., and G. D. Hess, 1998: An overview of the HYSPLIT4 modelling system for trajectories, dispersion, and deposition. Aust. Meteor. Mag., 47, 295-308.
    Duan Haixia, Zhao Jianhua, and Li Yaohui, 2013: The frequencies, severities, and driving factors of the sand-dust weather processes occurred in northern China in the spring of 2011. Journal of Desert Research, 33, 179-186. (in Chinese)
    Dubovik, O., A. Smirnov, B. N. Holben, et al., 2000: Accuracy assessments of aerosol optical properties retrieved from Aerosol Robotic Network (AERONET) sun and sky radiance measurements. J. Geophys. Res., 105, 9791-9806.
    Duzgoren-Aydin, N. S., 2008: Health effects of atmospheric particulates: A medical geology perspective. J. Environ. Sci. Heal. C Environ. Carcinog. Ecotoxicol. Rev., 26, 1-39.
    Fu Qingyan, Zhuang Guoshun, Wang Jing, et al., 2008: Mechanism of formation of the heaviest pollution episode ever recorded in the Yangtze River Delta, China. Atmos. Environ., 42, 2023-2036.
    Haywood, J. M., V. Ramaswamy, and L. J. Donner, 1997: A limited-area-model case study of the effects of sub-grid scale variations in relative humidity and cloud upon the direct radiative forcing of sulfate aerosol. Geophys. Res. Lett., 24, 143-146.
    He, Q. S., J. T. Mao, J. Y. Chen, et al., 2006: Observational and modeling studies of urban atmospheric boundary-layer height and its evolution mechanisms. Atmos. Environ., 40, 1064-1077.
    He Qianshan, Li Chengcai, Mao Jietai, et al., 2008: Analysis of aerosol vertical distribution and variability in Hong Kong. J. Geophys. Res., 113, D14211, doi: 10.1029/2008JD009778.
    He Qianshan, Li Chengcai, Geng Fuhai, et al., 2012: Aerosol optical properties retrieved from sun photometer measurements over Shanghai, China. J. Geophys. Res., 117, D16204, doi: 10.1029/2011JD 017220.
    Holben, B. N., T. F. Eck, I. Slutsker, et al., 1998: AERONET-A federated instrument network and data archive for aerosol characterization. Remote Sens. Environ., 66, 1-16.
    Hu Dawei, Qiao Liping, Chen Jianmin, et al., 2010: Hygroscopicity of inorganic aerosols: Size and relative humidity effects on the growth factor. Aerosol Air Qual. Res., 10, 255-264.
    Huang, K., G. Zhuang, Y. Lin, et al., 2012: Typical types and formation mechanisms of haze in an eastern Asian megacity, Shanghai. Atmos. Chem. Phys., 12, 105-124.
    Kang, C. M., H. S. Lee, B. W. Kang, et al., 2004: Chemical characteristics of acidic gas pollutants and PM2.5 species during hazy episodes in Seoul, South Korea. Atmos. Environ., 38, 4749-4760.
    Kim, S. W., S. C. Yoon, J. Kim, et al., 2010: Asian dust event observed in Seoul, Korea, during 29-31 May 2008: Analysis of transport and vertical distribution of dust particles from lidar and surface measurements. Sci. Total Environ., 408, 1707-1718.
    Kunkel, K. E., E. W. Eloranta, and S. T. Shipley, 1977: Lidar observations of the convective boundary layer. J. Appl. Meteor., 16, 1306-1311.
    Liu Yi, Yang Dongxu, ChenWenzhong, et al., 2010: Measurements of Asian dust optical properties over the Yellow Sea of China by shipboard and ground-based photometers, along with satellite remote sensing: A case study of the passage of a frontal system during April 2006. J. Geophys. Res., 115, D00K04, doi: 10.1029/2009JD012684.
    Luo Yunfeng, Lu Daren, Zhou Xiuji, et al., 2001: Characteristics of the spatial distribution and yearly variation of aerosol optical depth over China in last 30 years. J. Geophys. Res., 106, 14501-14513.
    Mariano, G. L., F. J. S. Lopes, M. P. P. M. Jorge, et al., 2010: Assessment of biomass burnings activity with the synergy of sunphotometric and LIDAR measurements in S~ao Paulo, Brazil. Atmos. Res., 98, 486-499.
    Melfi, S. H., J. D. Spinhirne, S. H. Chou, et al., 1985: Lidar observations of vertically organized convection in the planetary boundary layer over the ocean. J. Climate Appl. Meteor., 24, 806-821.
    Menut, L., C. Flamant, J. Pelon, et al., 1999: Urban boundary-layer height determination from lidar measurements over the Paris area. Appl. Opt., 38, 945-954.
    Noh, Y. M., Y. J. Kim, B. C. Choi, et al., 2007: Aerosol lidar ratio characteristics measured by a multiwavelength Raman lidar system at Anmyeon Island, Korea. Atmos. Res., 86, 76-87.
    Pan Liang, Che Huizheng, Geng Fuhai, et al., 2010: Aerosol optical properties based on ground measurements over the Chinese Yangtze Delta region. Atmos. Environ., 44, 2587-2596.
    Parikh, N. C., and J. A. Parikh, 2002: Systematic tracking of boundary layer aerosols with laser radar. Opt. Laser Technol., 34, 177-185.
    Qiu Jinhuan and Sun Jinhui, 1994: Optically remote sensing of the dust storm and result analysis. Chinese J. Atmos. Sci., 18, 1-10. (in Chinese)
    Quan Jiannong, Gao Yang, Zhang Qiang, et al., 2013: Evolution of planetary boundary layer under different weather conditions, and its impact on aerosol concentrations. Particuology, 11, 34-40.
    Ramanathan, V., P. J. Crutzen, J. Lelieveld, et al., 2001: Indian Ocean Experiment: An integrated analysis of the climate forcing and effects of the great IndoAsian haze. J. Geophys. Res., 106, 28371-28398.
    Ramanathan, V., F. Li, M. V. Ramana, et al., 2007: Atmospheric brown clouds: Hemispherical and regional variations in long-range transport, absorption, and radiative forcing. J. Geophys. Res., 112, D22S21, doi: 10.1029/2006JD008124.
    Russell, P. B., E. E. Uthe, F. L. Ludwig, et al., 1974: A comparison of atmospheric structure as observed with monostatic acoustic sounder and lidar techniques. J. Geophys. Res., 79, 5555-5566.
    Russell, P. B., W. Viezee, R. D. Hake Jr, et al., 1976: Lidar observations of the stratospheric aerosol: California, October 1972 to March 1974. Quart. J. Roy. Meteor. Soc., 102, 675-695.
    Salinas, S. V., B. N. Chew, J. Miettinen, et al., 2013: Physical and optical characteristics of the October 2010 haze event over Singapore: A photometric and lidar analysis. Atmos. Res., 122, 555-570.
    Sassen, K., and B. S. Cho, 1992: Subvisual-thin cirrus lidar dataset for satellite verification and climatological research. J. Appl. Meteor., 31, 1275-1285.
    Seibert, P., F. Beyrich, S. E. Gryning, et al., 2000: Review and intercomparison of operational methods for the determination of the mixing height. Atmos. Environ., 34, 1001-1027.
    Spinhirne, J. D., 1993: Micro pulse lidar. IEEE Trans. Geosci. Remote Sens., 31, 48-55.
    Sun Yele, Zhuang Gguoshun, Tang Aohan, et al., 2006: Chemical characteristics of PM2.5 and PM10 in hazefog episodes in Beijing. Environ. Sci. Technol., 40, 3148-3155.
    Sun Xia, Yin Yan, Sun Yuwen, et al., 2013: Seasonal and vertical variations in aerosol distribution over Shijiazhuang, China. Atmos. Environ., 81, 245-252.
    Tegen, I., and A. A. Lacis, 1996: Modeling of particle size distribution and its influence on the radiative properties of mineral dust aerosol. J. Geophys. Res., 101, 19237-19244.
    Tie Xuexi, G. P. Brasseur, Zhao Chunsheng, et al., 2006: Chemical characterization of air pollution in eastern China and the eastern United States. Atmos. Environ., 40, 2607-2625.
    Waggoner, A. P., R. E.Weiss, N. C. Ahlquist, et al., 1981: Optical characteristics of atmospheric aerosols. Atmos. Environ., 15, 1891-1909.
    Wakimoto, R. M., and J. L. Mcelroy, 1986: Lidar observation of elevated pollution layers over Los Angeles. J. Climate Appl. Meteor., 25, 1583-1599.
    Wang Yan, Xie Yisong, Li Zhengqiang, et al., 2013: Anthropogenic aerosol optical depth during days of high haze levels in the Beijing winter. J. Remote Sens., 17, 993-1007.
    Welton, E. J., K. J. Voss, P. K. Quinn, et al., 2002: Measurements of aerosol vertical profiles and optical properties during INDOEX 1999 using micropulse lidars. J. Geophys. Res., 107, INX2 18-1-INX2 1820, 8019, doi: 10.1029/2000JD000038.
    Yang Dongwei, Li Chengcai, A. H. K. Lao, et al., 2013: Long-term measurement of daytime atmospheric mixing layer height over Hong Kong. J. Geophys. Res., 118, 2422-2433.
    Zhang Renyi, A. Khalizov, Wang Lin, et al., 2012: Nucleation and growth of nanoparticles in the atmosphere. Chem. Rev., 112, 1957-2011.
    Zhang, R., J. Jing, J. Tao, et al., 2013: Chemical characterization and source apportionment of PM2.5 in Beijing: Seasonal perspective. Atmos. Chem. Phys., 13, 7053-7074.
  • Related Articles

  • Cited by

    Periodical cited type(13)

    1. Xue Hao, Yan Zhang, Guangyuan Yu, et al. Online vertical measurement of air pollutants: Development of a monitoring platform on a skyscraper and its application in Shanghai. Atmospheric Pollution Research, 2022. DOI:10.1016/j.apr.2022.101477
    2. Di Huige, Li Siwen, Yuan Yun, et al. Observational study of the vertical aerosol and meteorological factor distributions with respect to particulate pollution in Xi'an. Atmospheric Environment, 2021, 247: 118215. DOI:10.1016/j.atmosenv.2021.118215
    3. Manu Mehta, Richa Khushboo, Rahesh Raj, et al. Spaceborne observations of aerosol vertical distribution over Indian mainland (2009–2018). Atmospheric Environment, 2021, 244: 117902. DOI:10.1016/j.atmosenv.2020.117902
    4. Tian Zhou, Hailing Xie, Tao Jiang, et al. Seasonal characteristics of aerosol vertical structure and autumn enhancement of non-spherical particle over the semi-arid region of northwest China. Atmospheric Environment, 2021, 244: 117912. DOI:10.1016/j.atmosenv.2020.117912
    5. Zhizhong Sheng, Huizheng Che, Quanliang Chen, et al. Aerosol vertical distribution and optical properties of different pollution events in Beijing in autumn 2017. Atmospheric Research, 2019, 215: 193. DOI:10.1016/j.atmosres.2018.08.029
    6. Huibin Guo, Minxuan Chen. Short-term effect of air pollution on asthma patient visits in Shanghai area and assessment of economic costs. Ecotoxicology and Environmental Safety, 2018, 161: 184. DOI:10.1016/j.ecoenv.2018.05.089
    7. Tian Luan, Xueliang Guo, Lijun Guo, et al. Quantifying the relationship between PM<sub>2.5</sub> concentration, visibility and planetary boundary layer height for long-lasting haze and fog–haze mixed events in Beijing. Atmospheric Chemistry and Physics, 2018, 18(1): 203. DOI:10.5194/acp-18-203-2018
    8. Yanjun Ma, Hujia Zhao, Yunsheng Dong, et al. Comparison of Two Air Pollution Episodes over Northeast China in Winter 2016/17 Using Ground-Based Lidar. Journal of Meteorological Research, 2018, 32(2): 313. DOI:10.1007/s13351-018-7047-4
    9. Su-qin Han, Tian-yi Hao, Yu-fen Zhang, et al. Vertical observation and analysis on rapid formation and evolutionary mechanisms of a prolonged haze episode over central-eastern China. Science of The Total Environment, 2018, 616-617: 135. DOI:10.1016/j.scitotenv.2017.10.278
    10. Chunpeng Leng, Junyan Duan, Chen Xu, et al. Insights into a historic severe haze event in Shanghai: synoptic situation, boundary layer and pollutants. Atmospheric Chemistry and Physics, 2016, 16(14): 9221. DOI:10.5194/acp-16-9221-2016
    11. Jiansu Wei, Weijun Zhu, Duanyang Liu, et al. The Temporal and Spatial Distribution of Hazy Days in Cities of Jiangsu Province China and an Analysis of Its Causes. Advances in Meteorology, 2016, 2016: 1. DOI:10.1155/2016/6761504
    12. Hongnian Liu, Wanli Ma, Junlong Qian, et al. Effect of urbanization on the urban meteorology and air pollution in Hangzhou. Journal of Meteorological Research, 2015, 29(6): 950. DOI:10.1007/s13351-015-5013-y
    13. Adolfo Comerón, Ravil R. Agishev, Adolfo Comerón, et al. Generalization of optical, energy, and excess-noise parameters to compare capabilities of lidar with PMT/APD/SiPM. Remote Sensing of Clouds and the Atmosphere XXII, DOI:10.1117/12.2279145

    Other cited types(0)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return