Ackerley, D., B. B. B. Booth, S. H. E. Knight, et al., 2011: Sensitivity of twentieth-century Sahel rainfall to sulfate aerosol and COsub2/sub forcing. J. Climate, 24, 4999-5014, doi: 10.1175/JCLI-D-11-00019.1.brAckerman, A. S., O. B. Toon, D. E. Stevens, et al., 2000: Reduction of tropical cloudiness by soot. Sci-ence, 288, 1042-1047, doi: 10.1126/science.288. 5468.1042.brAdams, P. J., J. H. Seinfeld, D. Koch, et al., 2001: Gen-eral circulation model assessment of direct radiative forcing by the sulfate-nitrate-ammonium-water in-organic aerosol system. J. Geophys. Res., 106, 1097-1111, doi: 10.1029/2000JD900512.brAhn, C., O. Torres, and H. Jethva, 2014: Assessment of OMI near-UV aerosol optical depth over land. J. Geophys. Res., 119, 2457-2473, doi: 10.1002/2013JD020188.brAlam, K., T. Trautmann, T. Blaschke, et al., 2014: Changes in aerosol optical properties due to dust storms in the Middle East and Southwest Asia. Re-mote Sens. Environ., 143, 216-227, doi: 10.1016/j.rse.2013.12.021.brAlbrecht, B. A., 1989: Aerosols, cloud microphysics, and fractional cloudiness. Science, 245, 1227-1230. Allen, R. J., and S. C. Sherwood, 2010: Aerosol-cloud semi-direct effect and land-sea temperature contrast in a GCM. Geophys. Res. Lett., 37, L07702.brAnderson, T. L., S. J. Masonis, D. S. Covert, et al., 2003: Variability of aerosol optical properties derived from in-situ aircraft measurements during ACE-Asia. J. Geophys. Res., 108, doi: 10.1029/2002JD003247.brAndreae, M. O., D. Rosenfeld, P. Artaxo, et al., 2004: Smoking rain clouds over the Amazon. Science, 303, 1337-1342.br, and A. Gelencs#233;r, 2006: Black carbon or brown car-bon? The nature of light-absorbing carbonaceous aerosols. Atmos. Chem. Phys., 6, 3131-3148, doi: 10.5194/acp-6-3131-2006.br, and D. Rosenfeld, 2008: Aerosol-cloud-precipitation interactions. Part 1: The nature and sources of cloud-active aerosols. Earth-Sci. Rev., 89, 13-41, doi: 10.1016/j.earscirev.2008.03.001.brAnsell, C., H. E. Brindley, Y. Pradhan, et al., 2014: Min-eral dust aerosol net direct radiative effect during GERBILS field campaign period derived from SE-VIRI and GERB. J. Geophys. Res., 119, 4070-4086, doi: 10.1002/2013JD020681.brArimoto, R., Y. J. Kim, Y. P. Kim, et al., 2006: Characterization of Asian dust during ACE-Asia. Global Planet Change, 52, 23-56, doi: 10.1016/j.gloplacha.2006.02.013.brBauer, S. E., and S. Menon, 2012: Aerosol direct, in-direct, semidirect, and surface albedo effects from sector contributions based on the IPCC AR5 emis-sions for preindustrial and present-day conditions. J. Geophys. Res., 117, D01206.brBellouin, N., O. Boucher, J. Haywood, et al., 2005: Global estimate of aerosol direct radiative forcing from satellite measurements. Nature, 438, 1138-1141.br, A. Jones, J. Haywood, et al., 2008: Updated estimate of aerosol direct radiative forcing from satellite ob-servations and comparison against the Hadley Cen-tre climate model. J. Geophys. Res., 113, D10205.brBi Jianrong, Huang Jianping, Fu Qiang, et al., 2011: Toward characterization of the aerosol optical prop-erties over Loess Plateau of northwestern China. J. Quant. Spectrosc. Radiat. Transfer, 112, 346-360, doi: 10.1016/j.jqsrt.2010.09.006.brBian, H., M. Chin, J. M. Rodriguez, et al., 2009: Sensi-tivity of aerosol optical thickness and aerosol direct radiative effect to relative humidity. Atmos. Chem. Phys., 9, 2375-2386.brBoucher, O., and U. Lohmann, 1995: The sulfate-CCN-cloud albedo effect: A sensitivity study with two general circulation models. Tellus B, 47, 281-300.brBreider, T. J., L. J. Mickley, D. J. Jacob, et al., 2014: Annual distributions and sources of Arctic aerosol components, aerosol optical depth, and aerosol ab-sorption. J. Geophys. Res., 119, 4107-4124, doi: 10.1002/2013JD020996.brBrenguier, J. L., H. Pawlowska, L. Sch#252;ller, et al., 2000: Radiative properties of boundary layer clouds: Droplet effective radius versus number concentration. J. Atmos. Sci., 57, 803-821, doi: 10.1175/1520-0469(2000)0570803:RPOBLC2.0. CO;2.br, , and , 2003: Cloud microphysical and ra-diative properties for parameterization and satel-lite monitoring of the indirect effect of aerosol on climate. J. Geophys. Res., 108, doi: 10.1029/2002JD002682.brCai Hongke, Zhou Renjun, Fu Yunfei, et al. 2011: Cloud aerosol lidar with orthogonal polarization detection of aerosol optical properties after a crop burning case. Climatic Environ. Res., 16, 469-478. (in Chinese)brCampanelli, M., T. Nakajima, and B. Olivieri, 2004: De-termination of the solar calibration constant for a sun-sky radiometer: Proposal of an in-situ proce-dure. Appl. Opt., 43, 651-659.brCampbell, J. R., D. L. Hlavka, E. J. Welton, et al., 2002: Full-time, eye-safe cloud and aerosol lidar observa-tion at atmospheric radiation measurement program sites: Instruments and data processing. J. Atmos. Ocean. Technol., 19, 431-442, doi: 10.1175/1520-0426(2002)0190431:ftesca2.0.co;2.brCharlson, R. J., J. Langner, H. Rodhe, et al., 1991: Per-turbation of the Northern Hemisphere radiative bal-ance by backscattering from anthropogenic sulfate aerosols. Tellus A, 43, 152-163, doi: 10.1034/j.1600-0870.1991.00013.x.br, S. E. Schwartz, J. M. Hales, et al., 1992: Climate forcing by anthropogenic aerosols. Science, 255, 423-430, doi: 10.1126/science.255.5043.423.brChe, H. Z., X. Y. Zhang, H. B. Chen, et al., 2009: Instrument calibration and aerosol optical depth validation of the China Aerosol Remote Sensing Network. J. Geophys. Res., 114, D03206, doi: 10.1029/2008JD011030.br, Y. Q. Wang, J. Y. Sun, et al., 2013: Variation of aerosol optical properties over the Taklimakan Desert in China. Aerosol Air Qual. Res., 13, 777-785, doi: 10.4209/aaqr.2012.07.0200.br, X. Xia, J. Zhu, et al., 2014: Column aerosol opti-cal properties and aerosol radiative forcing during a serious haze-fog month over North China Plain in 2013 based on ground-based sunphotometer mea-surements. Atmos. Chem. Phys., 14, 2125-2138, doi: 10.5194/acp-14-2125-2014.brChen, B., J. P. Huang, P. Minnis, et al., 2010: Detec-tion of dust aerosol by combining CALIPSO active lidar and passive IIR measurements. Atmos. Chem. Phys., 10, 4241-4251, doi: 10.5194/acp-10-4241-2010.brChen, T., W. B. Rossow, and Y. C. Zhang, 2000: Radia-tive effects of cloud-type variations. J. Climate, 13, 264-286, doi: 10.1175/1520-0442(2000)0130264: REOCTV2.0.CO;2.brChen Lin, Shi Guangyu, Qin Shiguang, et al., 2011: Di-rect radiative forcing of anthropogenic aerosols over oceans from satellite observations. Adv. Atmos. Sci., 28, 973-984, doi: 10.1007/s00376-010-9210-4.brChiapello, I., G. Bergametti, B. Chatenet, et al., 1997: Origins of African dust transported over the north-eastern tropical Atlantic. J. Geophys. Res., 102, 13701-13709, doi: 10.1029/97JD00259.brChuang, C. C., J. E. Penner, J. M. Prospero, et al., 2002: Cloud susceptibility and the first aerosol indi-rect forcing: Sensitivity to black carbon and aerosol concentrations. J. Geophys. Res., 107, 4564, doi: 10.1029/2000jd000215.brChung, S. H., and J. H. Seinfeld, 2005: Climate response of direct radiative forcing of anthropogenic black carbon. J. Geophys. Res., 110, D11102.brCh#253;lek, P., and J. Wong, 1995: Effect of absorbing aerosols on global radiation budget. Geophys. Res. Lett., 22, 929-931, doi: 10.1029/95GL00800.br, G. B. Lesins, G. Videen, et al., 1996: Black car-bon and absorption of solar radiation by clouds. J. Geophys. Res., 101, 23365-23371, doi: 10.1029/96JD01901.brCoakley, J. A., R. L. Bernstein, and P. A. Durkee, 1987: Effect of ship-stack effluents on cloud reflec-tivity. Science, 237, 1020-1022, doi: 10.1126/sci-ence.237.4818.1020.brCook, J., and E. J. Highwood, 2004: Climate response to tropospheric absorbing aerosols in an intermediate general-circulation model. Quart. J. Roy. Meteor. Soc., 130, 175-191, doi: 10.1256/qj.03.64.brCooke, W. F., and J. J. N. Wilson, 1996: A global black carbon aerosol model. J. Geophys. Res., 101, 19395-19409, doi: 10.1029/96JD00671.brDai, T., D. Goto, N. A. J. Schutgens, et al., 2014: Simu-lated aerosol key optical properties over global scale using an aerosol transport model coupled with a new type of dynamic core. Atmos. Environ., 82, 71-82, doi: 10.1016/j.atmosenv.2013.10.018.brDeng Xueliang, He Dongyan, Pan Delu, et al., 2010: Aerosol direct forcing estimated from satellite data over the China seas. Acta Meteor. Sinica, 68, 666-679. (in Chinese)brDiner, D. J., W. A. Abdou, C. J. Bruegge, et al., 2001: MISR aerosol optical depth retrievals over southern Africa during the SAFARI-2000 dry season cam-paign. Geophys. Res. Lett., 28, 3127-3130, doi: 10.1029/2001GL013188.brDong Zipeng, Yu Xing, Li Xingmin, et al., 2013: Analy-sis of variation trends and causes of aerosol optical depth in Shaanxi Province using MODIS data. Chin. Sci. Bull., 58, 4486-4496, doi: 10.1007/s11434-013-5991-z.brDubovik, O., B. N. Holben, T. F. Eck, et al., 2002: Variability of absorption and optical properties of key aerosol types observed in worldwide locations. J. Atmos. Sci., 59, 590-608, doi: 10.1175/1520-0469(2002)0590590:voaaop2.0.CO;2.brEck, T. F., B. N. Holben, D. E. Ward, et al., 2003: Variability of biomass burning aerosol optical char-acteristics in southern Africa during the SAFARI 2000 dry season campaign and a comparison of single scattering albedo estimates from radiomet-ric measurements. J. Geophys. Res., 108, doi: 10.1029/2002JD002321.brFisher, D., J. P. Muller, and V. N. Yershov, 2014: Au-tomated stereo retrieval of smoke plume injection heights and retrieval of smoke plume masks from AATSR and their assessment with CALIPSO and MISR. IEEE Trans. Geosci. Remote Sens., 52, 1249-1258, doi: 10.1109/TGRS.2013.2249073.brFlossmann, A. I., W. D. Hall, and H. R. Pruppacher, 1985: A theoretical study of the wet removal of at-mospheric pollutants. Part I: The redistribution of aerosol particles captured through nucleation and impaction scavenging by growing cloud drops. J. Atmos. Sci., 42, 583-606, doi: 10.1175/1520-0469(1985)0420583:ATSOTW2.0.CO;2.brFougnie, B., P. Y. Deschamps, and R. Frouin, 1999: Vicarious calibration of the POLDER ocean color spectral bands using in situ measurements. IEEE Trans. Geosci. Remote Sens., 37, 1567-1574.brGao Ling, Ren Tong, Li Chengcai, et al., 2012: A re-trieval of the atmospheric aerosol optical depth from MTSAT. Acta Meteor. Sinica, 70, 598-608. (in Chinese)brGe, J. M., J. Su, T. P. Ackerman, et al., 2010: Dust aerosol optical properties retrieval and radiative forcing over northwestern China during the 2008 China-U.S. joint field experiment. J. Geophys. Res., 115, D00K12, doi: 10.1029/2009JD013263.brGhan, S. J., X. Liu, R. C. Easter, et al., 2012: To-ward a minimal representation of aerosols in climate models: Comparative decomposition of aerosol di-rect, semidirect, and indirect radiative forcing. J. Climate, 25, 6461-6471, doi: 10.1175/JCLI-D-11-00650.1.br, R. C. Easter, E. G. Chapman, et al., 2001: A physically based estimate of radiative forcing by an-thropogenic sulfate aerosol. J. Geophys. Res., 106, 5279-5293, doi: 10.1029/2000JD900503.brGinoux, P., and O. Torres, 2003: Empirical TOMS index for dust aerosol: Applications to model validation and source characterization. J. Geophys. Res., 108, doi: 10.1029/2003JD003470.brGong, S. L., X. Y. Zhang, T. L. Zhao, et al., 2006: A simulated climatology of Asian dust aerosol and its trans-Pacific transport. Part II: Interannual vari-ability and climate connections. J. Climate, 19, 104-122, doi: 10.1175/JCLI3606.1.brGong Wei, Zhang Shanshan, and Ma Yingying, 2014: Aerosol optical properties and determination of aerosol size distribution in Wuhan, China. Atmo-sphere, 5, 81-91, doi: 10.3390/atmos5010081.brGoudie, A. S., and N. J. Middleton, 2001: Saharan dust storms: Nature and consequences. Earth-Sci. Rev., 56, 179-204, doi: 10.1016/S0012-8252(01)00067-8.brGu, Y., K. N. Liou, Y. Xue, et al., 2006: Climatic effects of different aerosol types in China simulated by the UCLA general circulation model. J. Geophys. Res., 111, D15201, doi: 10.1029/2005JD006312.br, , W. Chen, et al., 2010: Direct climate ef-fect of black carbon in China and its impact on dust storm. J. Geophys. Res., 115, D00K14, doi: 10.1029/2009JD013427.br, , J. H. Jiang, et al., 2012: Dust aerosol impact on North African climate: A GCM investigation of aerosol-cloud-radiation interactions using A-Train satellite data. Atmos. Chem. Phys., 12, 1667-1679, doi: 10.5194/acp-12-1667-2012.brHan Xiao, Zhang Meigen, Han Zhiwen, et al., 2010: Model analysis of aerosol optical depth distributions over East Asia. Sci. China Earth Sci., 40, 1446-1458. (in Chinese)brHan, Y. M., Y. Iwamoto, T. Nakayama, et al., 2014: For-mation and evolution of biogenic secondary organic aerosol over a forest site in Japan. J. Geophys. Res., 119, 259-273, doi: 10.1002/2013JD020390.brHansen, J., M. Sato, and R. Ruedy, 1997: Radiative forc-ing and climate response. J. Geophys. Res., 102, 6831-6864, doi: 10.1029/96JD03436.brHayasaka, T., S. Satake, A. Shimizu, et al., 2007: Vertical distribution and optical properties of aerosols observed over Japan during the Atmo-spheric Brown Clouds-East Asia Regional Exper-iment 2005. J. Geophys. Res., 112, D22S35, doi: 10.1029/2006JD008086.brHeidinger, A. K., C. Y. Cao, and J. T. Sullivan, 2002: Using Moderate Resolution Imaging Spectrometer (MODIS) to calibrate advanced very high reso-lution radiometer reflectance channels. J. Geo-phys. Res., 107, AAC 11-1-AAC 11-10, doi: 10.1029/2001JD002035.brHighwood, E. J., J. M. Haywood, M. D. Silverstone, et al., 2003: Radiative properties and direct effect of Saharan dust measured by the C-130 aircraft during Saharan Dust Experiment (SHADE). 2: Terres-trial spectrum. J. Geophys. Res., 108, 8578, doi: 10.1029/2002JD002552.brHolben, B. N., T. F. Eck, I. Slutsker, et al., 1998: AERONETA federated instrument network and data archive for aerosol characterization. Remote Sens. Environ., 66, 1-16, doi: 10.1016/S0034-4257(98)00031-5.brHsu, S.-C., F. Tsai, F.-J. Lin, et al., 2013: A super Asian dust storm over the East and South China Seas: Disproportionate dust deposition. J. Geophys. Res., 118, 7169-7181, doi: 10.1002/jgrd.50405.brHu Ting, Sun Zhaobo, and Li Zhaoxin, 2011: Fea-tures of aerosol optical depth and its relation to extreme temperatures in China during 1980-2001. Acta Oceanologica Sinica, 30, 33-45, doi: 10.1007/s13131-011-0103-x.brHuang Jianping, Wang Yujie, Wang Tianhe, et al., 2006a: Dusty cloud radiative forcing dericved from satellite data for middle latitude regions of East Asia. Prog. Nat. Sci., 16, 1084-1089, doi: 10.1080/10020070612330114.brHuang, J. P., B. Lin, P. Minnis, et al., 2006b: Satellite-based assessment of possible dust aerosols semi-direct effect on cloud water path over East Asia. Geophys. Res. Lett., 33, L19802, doi: 10.1029/2006GL026561.br, P. Minnis, B. Lin, et al., 2006c: Possible influ-ences of Asian dust aerosols on cloud properties and radiative forcing observed from MODIS and CERES. Geophys. Res. Lett., 33, L06824, doi: 10.1029/2005GL024724.br, , B. Chen, et al., 2008a: Long-range trans-port and vertical structure of Asian dust from CALIPSO and surface measurements during PACDEX. J. Geophys. Res., 113, D23212, doi: 10.1029/2008JD010620.brHuang Jianping, Huang Zhongwei, Bi Jianrong, et al., 2008b: Micro-pulse lidar measurements of aerosol vertical structure over the Loess Plateau. Atmos. Oceanic Sci. Lett., 1, 8-11.brHuang, J. P., Q. Fu, J. Su, et al., 2009: Taklimakan dust aerosol radiative heating derived from CALIPSO ob-servations using the Fu-Liou radiation model with CERES constraints. Atmos. Chem. Phys., 9, 4011-4021, doi: 10.5194/acp-9-4011-2009.br, P. Minnis, H. Yan, et al., 2010: Dust aerosol ef-fect on semi-arid climate over Northwest China de-tected from A-Train satellite measurements. Atmos. Chem. Phys., 10, 6863-6872, doi: 10.5194/acp-10-6863-2010.brHudson, J. G., and P. R. Frisbie, 1991: Cloud condensa-tion nuclei near marine stratus. J. Geophys. Res., 96, 20795-20808, doi: 10.1029/91JD02212.brHulme, M., and M. Kelly, 1993: Exploring the links between desertification and climate change. Envi-ronment, 35, 4-45.brIslam, M. N., and M. Almazroui, 2012: Direct effects and feedback of desert dust on the climate of the Ara-bian Peninsula during the wet season: A regional climate model study. Climate Dyn., 39, 2239-2250, doi: 10.1007/s00382-012-1293-4.brJacobson, M. Z., 2000: A physically-based treatment of elemental carbon optics: Implications for global di-rect forcing of aerosols. Geophys. Res. Lett., 27, 217-220, doi: 10.1029/1999GL010968.br, 2001: Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols. Na-ture, 409, 695-697, doi: 10.1038/35055518.br, 2002: Control of fossil-fuel particulate black car-bon and organic matter, possibly the most ef-fective method of slowing global warming. J. Geophys. Res., 107, ACH 16-1-ACH 16-22, doi: 10.1029/2001JD001376.brJaffe, D., T. Anderson, D. Covert, et al., 1999: Trans-port of Asian air pollution to North America. Geophys. Res. Lett., 26, 711-714, doi: 10.1029/1999GL900100.brJiang, J. H., N. J. Livesey, H. Su, et al., 2007: Con-necting surface emissions, convective uplifting, and long-range transport of carbon monoxide in the upper-troposphere: New observations from the Aura MLS. Geophys. Res. Lett., 34, L18812, doi: 10.1029/2007GL030638.br, H. Su, M. R. Schoeberl, et al., 2008: Clean and polluted clouds: Relationships among pollution, ice cloud and precipitation in South America. Geophys. Res. Lett., 35, L14804, doi: 10.1029/2008GL034631.br, , C. Zhai, et al., 2011: Influence of convection and aerosol pollution on ice cloud particle effective radius. Atmos. Chem. Phys., 11, 457-463, doi: 10. 5194/acp-11-457-2011.brJimenez, J. L., M. R. Canagaratna, N. M. Donahue, et al., 2009: Evolution of organic aerosols in the atmo-sphere. Science, 326, 1525-1529, doi: 10.1126/sci-ence.1180353.brJohnson, B. T., K. P. Shine, and P. M. Forster, 2004: The semi-direct aerosol effect: Impact of absorb-ing aerosols on marine stratocumulus. Quart. J. Roy. Meteor. Soc., 130, 1407-1422, doi: 10.1256/qj.03.61.brJones, A., D. L. Roberts, and A. Slingo, 1994: A cli-mate model study of the indirect radiative forcing by anthropogenic sulphate aerosols. Nature, 370, 450-453, doi: 10.1038/370450a0.br, , M. J. Woodage, et al., 2001: Indirect sulphate aerosol forcing in a climate model with an interactive sulphur cycle. J. Geophys. Res., 106, 20293-20310, doi: 10.1029/2000JD000089.brKaufman, Y. J., I. Koren, L. A. Remer, et al., 2005a: The effect of smoke, dust, and pollution aerosol on shallow cloud development over the Atlantic Ocean. Proc. Natl. Acad. Sci. USA, 102, 11207-11212, doi: 10.1073/pnas.0505191102.br, L. A. Remer, D. Tanre, et al., 2005b: A critical exam-ination of the residual cloud contamination and diur-nal sampling effects on MODIS estimates of aerosol over ocean. IEEE Trans. Geosci. Remote Sens., 43, 2886-2897, doi: 10.1109/TGRS.2005.858430.br, and I. Koren, 2006: Smoke and pollution aerosol effect on cloud cover. Science, 313, 655-658, doi: 10.1126/science.1126232.brKazil, J., P. Stier, K. Zhang, et al., 2010: Aerosol nu-cleation and its role for clouds and earths radia-tive forcing in the aerosol-climate model ECHAM5-HAM. Atmos. Chem. Phys., 10, 10733-10752, doi: 10.5194/acpd-10-12261-2010.brKiehl, J. T., and B. P. Briegleb, 1993: The relative roles of sulfate aerosols and greenhouse gases in climate forcing. Science, 260, 311-314, doi: 10.1126/sci-ence.260.5106.311.br, T. L. Schneider, P. J. Rasch, et al., 2000: Radia-tive forcing due to sulfate aerosols from simulations with the National Center for Atmospheric Research Community Climate Model, Version 3. J. Geophys. Res., 105, 1441-1457, doi: 10.1029/1999JD900495.brKim, D., M. Chin, H. Yu, et al., 2011: Dust optical properties over North Africa and Arabian Penin-sula derived from the AERONET dataset. Atmos. Chem. Phys., 11, 10733-10741, doi: 10.5194/acp-11-10733-2011.brKinne, S., M. Schulz, C. Textor, et al., 2006: An Aero-Com initial assessment-optical properties in aerosol component modules of global models. Atmos. Chem. Phys., 6, 1815-1834, doi: 10.5194/acp-6-1815-2006.brKishcha, P., B. Starobinets, and P. Alpert, 2007: Latitudinal variations of cloud and aerosol op-tical thickness trends based on MODIS satellite data. Geophys. Res. Lett., 34, L05810, doi: 10.1029/2006GL028796.brKoch, D., 2001: Transport and direct radiative forcing of carbonaceous and sulfate aerosols in the GISS GCM. J. Geophys. Res., 106, 20311-20332, doi: 10.1029/2001JD900038.br, and A. D. Del Genio, 2010: Black carbon semi-direct effects on cloud cover: Review and synthesis. Atmos. Chem. Phys., 10, 7685-7696, doi: 10.5194/acp-10-7685-2010.brKristjansson, J. E., 2002: Studies of the aerosol indi-rect effect from sulfate and black carbon aerosols. J. Geophys. Res., 107, AAC 1-1-AAC 1-19. doi: 10.1029/2001JD000887.brLangner, J., and H. Rodhe, 1991: A global three-dimensional model of the global sulfur cycle. J. Atmos. Chem., 13, 225-263.brLe Treut, H., M. Forichon, O. Boucher, et al., 1998: Sulfate aerosol indirect effect and COsub2/sub green-house forcing: Equilibrium response of the LMD GCM and associated cloud feedbacks. J. Climate, 11, 1673-1685, doi: 10.1175/1520-0442(1998)0111673:SAIEAC2.0.CO;2.brLi, J. N., K. Salzen, Y. R. Peng, et al., 2013: Evalua-tion of black carbon semi-direct radiative effect in a climate model. J. Geophys. Res., 118, 4715-4728, doi: 10.1002/jgrd.50327.brLi Shu, Wang Tijian, Zhuang Bingliang, et al., 2009: Indirect radiative forcing and climatic effect of the anthropogenic nitrate aerosol on regional climate of China. Adv. Atmos. Sci., 26, 543-552, doi:10.1007/s00376-009-0543-9.
|