A Review of Aerosol Optical Properties and Radiative Effects

+ Author Affiliations + Find other works by these authors

PDF

  • Atmospheric aerosols influence the earth's radiative balance directly through scattering and absorbing solar radiation, and indirectly through affecting cloud properties. An understanding of aerosol optical properties is fundamental to studies of aerosol effects on climate. Although many such studies have been undertaken, large uncertainties in describing aerosol optical characteristics remain, especially regarding the absorption properties of different aerosols. Aerosol radiative effects are considered as either positive or negative perturbations to the radiation balance, and they include direct, indirect (albedo effect and cloud lifetime effect), and semi-direct effects. The total direct effect of anthropogenic aerosols is negative (cooling), although some components may contribute a positive effect (warming). Both the albedo effect and cloud lifetime effect cool the atmosphere by increasing cloud optical depth and cloud cover, respectively. Absorbing aerosols, such as carbonaceous aerosols and dust, exert a positive forcing at the top of atmosphere and a negative forcing at the surface, and they can directly warm the atmosphere. Internally mixed black carbon aerosols produce a stronger warming effect than externally mixed black carbon particles do. The semi-direct effect of absorbing aerosols could amplify this warming effect. Based on observational (ground-and satellite-based) and simulation studies, this paper reviews current progress in research regarding the optical properties and radiative effects of aerosols and also discusses several important issues to be addressed in future studies.
  • Ackerley, D., B. B. B. Booth, S. H. E. Knight, et al., 2011: Sensitivity of twentieth-century Sahel rainfall to sulfate aerosol and COsub2/sub forcing. J. Climate, 24, 4999-5014, doi: 10.1175/JCLI-D-11-00019.1.brAckerman, A. S., O. B. Toon, D. E. Stevens, et al., 2000: Reduction of tropical cloudiness by soot. Sci-ence, 288, 1042-1047, doi: 10.1126/science.288. 5468.1042.brAdams, P. J., J. H. Seinfeld, D. Koch, et al., 2001: Gen-eral circulation model assessment of direct radiative forcing by the sulfate-nitrate-ammonium-water in-organic aerosol system. J. Geophys. Res., 106, 1097-1111, doi: 10.1029/2000JD900512.brAhn, C., O. Torres, and H. Jethva, 2014: Assessment of OMI near-UV aerosol optical depth over land. J. Geophys. Res., 119, 2457-2473, doi: 10.1002/2013JD020188.brAlam, K., T. Trautmann, T. Blaschke, et al., 2014: Changes in aerosol optical properties due to dust storms in the Middle East and Southwest Asia. Re-mote Sens. Environ., 143, 216-227, doi: 10.1016/j.rse.2013.12.021.brAlbrecht, B. A., 1989: Aerosols, cloud microphysics, and fractional cloudiness. Science, 245, 1227-1230. Allen, R. J., and S. C. Sherwood, 2010: Aerosol-cloud semi-direct effect and land-sea temperature contrast in a GCM. Geophys. Res. Lett., 37, L07702.brAnderson, T. L., S. J. Masonis, D. S. Covert, et al., 2003: Variability of aerosol optical properties derived from in-situ aircraft measurements during ACE-Asia. J. Geophys. Res., 108, doi: 10.1029/2002JD003247.brAndreae, M. O., D. Rosenfeld, P. Artaxo, et al., 2004: Smoking rain clouds over the Amazon. Science, 303, 1337-1342.br, and A. Gelencs#233;r, 2006: Black carbon or brown car-bon? The nature of light-absorbing carbonaceous aerosols. Atmos. Chem. Phys., 6, 3131-3148, doi: 10.5194/acp-6-3131-2006.br, and D. Rosenfeld, 2008: Aerosol-cloud-precipitation interactions. Part 1: The nature and sources of cloud-active aerosols. Earth-Sci. Rev., 89, 13-41, doi: 10.1016/j.earscirev.2008.03.001.brAnsell, C., H. E. Brindley, Y. Pradhan, et al., 2014: Min-eral dust aerosol net direct radiative effect during GERBILS field campaign period derived from SE-VIRI and GERB. J. Geophys. Res., 119, 4070-4086, doi: 10.1002/2013JD020681.brArimoto, R., Y. J. Kim, Y. P. Kim, et al., 2006: Characterization of Asian dust during ACE-Asia. Global Planet Change, 52, 23-56, doi: 10.1016/j.gloplacha.2006.02.013.brBauer, S. E., and S. Menon, 2012: Aerosol direct, in-direct, semidirect, and surface albedo effects from sector contributions based on the IPCC AR5 emis-sions for preindustrial and present-day conditions. J. Geophys. Res., 117, D01206.brBellouin, N., O. Boucher, J. Haywood, et al., 2005: Global estimate of aerosol direct radiative forcing from satellite measurements. Nature, 438, 1138-1141.br, A. Jones, J. Haywood, et al., 2008: Updated estimate of aerosol direct radiative forcing from satellite ob-servations and comparison against the Hadley Cen-tre climate model. J. Geophys. Res., 113, D10205.brBi Jianrong, Huang Jianping, Fu Qiang, et al., 2011: Toward characterization of the aerosol optical prop-erties over Loess Plateau of northwestern China. J. Quant. Spectrosc. Radiat. Transfer, 112, 346-360, doi: 10.1016/j.jqsrt.2010.09.006.brBian, H., M. Chin, J. M. Rodriguez, et al., 2009: Sensi-tivity of aerosol optical thickness and aerosol direct radiative effect to relative humidity. Atmos. Chem. Phys., 9, 2375-2386.brBoucher, O., and U. Lohmann, 1995: The sulfate-CCN-cloud albedo effect: A sensitivity study with two general circulation models. Tellus B, 47, 281-300.brBreider, T. J., L. J. Mickley, D. J. Jacob, et al., 2014: Annual distributions and sources of Arctic aerosol components, aerosol optical depth, and aerosol ab-sorption. J. Geophys. Res., 119, 4107-4124, doi: 10.1002/2013JD020996.brBrenguier, J. L., H. Pawlowska, L. Sch#252;ller, et al., 2000: Radiative properties of boundary layer clouds: Droplet effective radius versus number concentration. J. Atmos. Sci., 57, 803-821, doi: 10.1175/1520-0469(2000)0570803:RPOBLC2.0. CO;2.br, , and , 2003: Cloud microphysical and ra-diative properties for parameterization and satel-lite monitoring of the indirect effect of aerosol on climate. J. Geophys. Res., 108, doi: 10.1029/2002JD002682.brCai Hongke, Zhou Renjun, Fu Yunfei, et al. 2011: Cloud aerosol lidar with orthogonal polarization detection of aerosol optical properties after a crop burning case. Climatic Environ. Res., 16, 469-478. (in Chinese)brCampanelli, M., T. Nakajima, and B. Olivieri, 2004: De-termination of the solar calibration constant for a sun-sky radiometer: Proposal of an in-situ proce-dure. Appl. Opt., 43, 651-659.brCampbell, J. R., D. L. Hlavka, E. J. Welton, et al., 2002: Full-time, eye-safe cloud and aerosol lidar observa-tion at atmospheric radiation measurement program sites: Instruments and data processing. J. Atmos. Ocean. Technol., 19, 431-442, doi: 10.1175/1520-0426(2002)0190431:ftesca2.0.co;2.brCharlson, R. J., J. Langner, H. Rodhe, et al., 1991: Per-turbation of the Northern Hemisphere radiative bal-ance by backscattering from anthropogenic sulfate aerosols. Tellus A, 43, 152-163, doi: 10.1034/j.1600-0870.1991.00013.x.br, S. E. Schwartz, J. M. Hales, et al., 1992: Climate forcing by anthropogenic aerosols. Science, 255, 423-430, doi: 10.1126/science.255.5043.423.brChe, H. Z., X. Y. Zhang, H. B. Chen, et al., 2009: Instrument calibration and aerosol optical depth validation of the China Aerosol Remote Sensing Network. J. Geophys. Res., 114, D03206, doi: 10.1029/2008JD011030.br, Y. Q. Wang, J. Y. Sun, et al., 2013: Variation of aerosol optical properties over the Taklimakan Desert in China. Aerosol Air Qual. Res., 13, 777-785, doi: 10.4209/aaqr.2012.07.0200.br, X. Xia, J. Zhu, et al., 2014: Column aerosol opti-cal properties and aerosol radiative forcing during a serious haze-fog month over North China Plain in 2013 based on ground-based sunphotometer mea-surements. Atmos. Chem. Phys., 14, 2125-2138, doi: 10.5194/acp-14-2125-2014.brChen, B., J. P. Huang, P. Minnis, et al., 2010: Detec-tion of dust aerosol by combining CALIPSO active lidar and passive IIR measurements. Atmos. Chem. Phys., 10, 4241-4251, doi: 10.5194/acp-10-4241-2010.brChen, T., W. B. Rossow, and Y. C. Zhang, 2000: Radia-tive effects of cloud-type variations. J. Climate, 13, 264-286, doi: 10.1175/1520-0442(2000)0130264: REOCTV2.0.CO;2.brChen Lin, Shi Guangyu, Qin Shiguang, et al., 2011: Di-rect radiative forcing of anthropogenic aerosols over oceans from satellite observations. Adv. Atmos. Sci., 28, 973-984, doi: 10.1007/s00376-010-9210-4.brChiapello, I., G. Bergametti, B. Chatenet, et al., 1997: Origins of African dust transported over the north-eastern tropical Atlantic. J. Geophys. Res., 102, 13701-13709, doi: 10.1029/97JD00259.brChuang, C. C., J. E. Penner, J. M. Prospero, et al., 2002: Cloud susceptibility and the first aerosol indi-rect forcing: Sensitivity to black carbon and aerosol concentrations. J. Geophys. Res., 107, 4564, doi: 10.1029/2000jd000215.brChung, S. H., and J. H. Seinfeld, 2005: Climate response of direct radiative forcing of anthropogenic black carbon. J. Geophys. Res., 110, D11102.brCh#253;lek, P., and J. Wong, 1995: Effect of absorbing aerosols on global radiation budget. Geophys. Res. Lett., 22, 929-931, doi: 10.1029/95GL00800.br, G. B. Lesins, G. Videen, et al., 1996: Black car-bon and absorption of solar radiation by clouds. J. Geophys. Res., 101, 23365-23371, doi: 10.1029/96JD01901.brCoakley, J. A., R. L. Bernstein, and P. A. Durkee, 1987: Effect of ship-stack effluents on cloud reflec-tivity. Science, 237, 1020-1022, doi: 10.1126/sci-ence.237.4818.1020.brCook, J., and E. J. Highwood, 2004: Climate response to tropospheric absorbing aerosols in an intermediate general-circulation model. Quart. J. Roy. Meteor. Soc., 130, 175-191, doi: 10.1256/qj.03.64.brCooke, W. F., and J. J. N. Wilson, 1996: A global black carbon aerosol model. J. Geophys. Res., 101, 19395-19409, doi: 10.1029/96JD00671.brDai, T., D. Goto, N. A. J. Schutgens, et al., 2014: Simu-lated aerosol key optical properties over global scale using an aerosol transport model coupled with a new type of dynamic core. Atmos. Environ., 82, 71-82, doi: 10.1016/j.atmosenv.2013.10.018.brDeng Xueliang, He Dongyan, Pan Delu, et al., 2010: Aerosol direct forcing estimated from satellite data over the China seas. Acta Meteor. Sinica, 68, 666-679. (in Chinese)brDiner, D. J., W. A. Abdou, C. J. Bruegge, et al., 2001: MISR aerosol optical depth retrievals over southern Africa during the SAFARI-2000 dry season cam-paign. Geophys. Res. Lett., 28, 3127-3130, doi: 10.1029/2001GL013188.brDong Zipeng, Yu Xing, Li Xingmin, et al., 2013: Analy-sis of variation trends and causes of aerosol optical depth in Shaanxi Province using MODIS data. Chin. Sci. Bull., 58, 4486-4496, doi: 10.1007/s11434-013-5991-z.brDubovik, O., B. N. Holben, T. F. Eck, et al., 2002: Variability of absorption and optical properties of key aerosol types observed in worldwide locations. J. Atmos. Sci., 59, 590-608, doi: 10.1175/1520-0469(2002)0590590:voaaop2.0.CO;2.brEck, T. F., B. N. Holben, D. E. Ward, et al., 2003: Variability of biomass burning aerosol optical char-acteristics in southern Africa during the SAFARI 2000 dry season campaign and a comparison of single scattering albedo estimates from radiomet-ric measurements. J. Geophys. Res., 108, doi: 10.1029/2002JD002321.brFisher, D., J. P. Muller, and V. N. Yershov, 2014: Au-tomated stereo retrieval of smoke plume injection heights and retrieval of smoke plume masks from AATSR and their assessment with CALIPSO and MISR. IEEE Trans. Geosci. Remote Sens., 52, 1249-1258, doi: 10.1109/TGRS.2013.2249073.brFlossmann, A. I., W. D. Hall, and H. R. Pruppacher, 1985: A theoretical study of the wet removal of at-mospheric pollutants. Part I: The redistribution of aerosol particles captured through nucleation and impaction scavenging by growing cloud drops. J. Atmos. Sci., 42, 583-606, doi: 10.1175/1520-0469(1985)0420583:ATSOTW2.0.CO;2.brFougnie, B., P. Y. Deschamps, and R. Frouin, 1999: Vicarious calibration of the POLDER ocean color spectral bands using in situ measurements. IEEE Trans. Geosci. Remote Sens., 37, 1567-1574.brGao Ling, Ren Tong, Li Chengcai, et al., 2012: A re-trieval of the atmospheric aerosol optical depth from MTSAT. Acta Meteor. Sinica, 70, 598-608. (in Chinese)brGe, J. M., J. Su, T. P. Ackerman, et al., 2010: Dust aerosol optical properties retrieval and radiative forcing over northwestern China during the 2008 China-U.S. joint field experiment. J. Geophys. Res., 115, D00K12, doi: 10.1029/2009JD013263.brGhan, S. J., X. Liu, R. C. Easter, et al., 2012: To-ward a minimal representation of aerosols in climate models: Comparative decomposition of aerosol di-rect, semidirect, and indirect radiative forcing. J. Climate, 25, 6461-6471, doi: 10.1175/JCLI-D-11-00650.1.br, R. C. Easter, E. G. Chapman, et al., 2001: A physically based estimate of radiative forcing by an-thropogenic sulfate aerosol. J. Geophys. Res., 106, 5279-5293, doi: 10.1029/2000JD900503.brGinoux, P., and O. Torres, 2003: Empirical TOMS index for dust aerosol: Applications to model validation and source characterization. J. Geophys. Res., 108, doi: 10.1029/2003JD003470.brGong, S. L., X. Y. Zhang, T. L. Zhao, et al., 2006: A simulated climatology of Asian dust aerosol and its trans-Pacific transport. Part II: Interannual vari-ability and climate connections. J. Climate, 19, 104-122, doi: 10.1175/JCLI3606.1.brGong Wei, Zhang Shanshan, and Ma Yingying, 2014: Aerosol optical properties and determination of aerosol size distribution in Wuhan, China. Atmo-sphere, 5, 81-91, doi: 10.3390/atmos5010081.brGoudie, A. S., and N. J. Middleton, 2001: Saharan dust storms: Nature and consequences. Earth-Sci. Rev., 56, 179-204, doi: 10.1016/S0012-8252(01)00067-8.brGu, Y., K. N. Liou, Y. Xue, et al., 2006: Climatic effects of different aerosol types in China simulated by the UCLA general circulation model. J. Geophys. Res., 111, D15201, doi: 10.1029/2005JD006312.br, , W. Chen, et al., 2010: Direct climate ef-fect of black carbon in China and its impact on dust storm. J. Geophys. Res., 115, D00K14, doi: 10.1029/2009JD013427.br, , J. H. Jiang, et al., 2012: Dust aerosol impact on North African climate: A GCM investigation of aerosol-cloud-radiation interactions using A-Train satellite data. Atmos. Chem. Phys., 12, 1667-1679, doi: 10.5194/acp-12-1667-2012.brHan Xiao, Zhang Meigen, Han Zhiwen, et al., 2010: Model analysis of aerosol optical depth distributions over East Asia. Sci. China Earth Sci., 40, 1446-1458. (in Chinese)brHan, Y. M., Y. Iwamoto, T. Nakayama, et al., 2014: For-mation and evolution of biogenic secondary organic aerosol over a forest site in Japan. J. Geophys. Res., 119, 259-273, doi: 10.1002/2013JD020390.brHansen, J., M. Sato, and R. Ruedy, 1997: Radiative forc-ing and climate response. J. Geophys. Res., 102, 6831-6864, doi: 10.1029/96JD03436.brHayasaka, T., S. Satake, A. Shimizu, et al., 2007: Vertical distribution and optical properties of aerosols observed over Japan during the Atmo-spheric Brown Clouds-East Asia Regional Exper-iment 2005. J. Geophys. Res., 112, D22S35, doi: 10.1029/2006JD008086.brHeidinger, A. K., C. Y. Cao, and J. T. Sullivan, 2002: Using Moderate Resolution Imaging Spectrometer (MODIS) to calibrate advanced very high reso-lution radiometer reflectance channels. J. Geo-phys. Res., 107, AAC 11-1-AAC 11-10, doi: 10.1029/2001JD002035.brHighwood, E. J., J. M. Haywood, M. D. Silverstone, et al., 2003: Radiative properties and direct effect of Saharan dust measured by the C-130 aircraft during Saharan Dust Experiment (SHADE). 2: Terres-trial spectrum. J. Geophys. Res., 108, 8578, doi: 10.1029/2002JD002552.brHolben, B. N., T. F. Eck, I. Slutsker, et al., 1998: AERONETA federated instrument network and data archive for aerosol characterization. Remote Sens. Environ., 66, 1-16, doi: 10.1016/S0034-4257(98)00031-5.brHsu, S.-C., F. Tsai, F.-J. Lin, et al., 2013: A super Asian dust storm over the East and South China Seas: Disproportionate dust deposition. J. Geophys. Res., 118, 7169-7181, doi: 10.1002/jgrd.50405.brHu Ting, Sun Zhaobo, and Li Zhaoxin, 2011: Fea-tures of aerosol optical depth and its relation to extreme temperatures in China during 1980-2001. Acta Oceanologica Sinica, 30, 33-45, doi: 10.1007/s13131-011-0103-x.brHuang Jianping, Wang Yujie, Wang Tianhe, et al., 2006a: Dusty cloud radiative forcing dericved from satellite data for middle latitude regions of East Asia. Prog. Nat. Sci., 16, 1084-1089, doi: 10.1080/10020070612330114.brHuang, J. P., B. Lin, P. Minnis, et al., 2006b: Satellite-based assessment of possible dust aerosols semi-direct effect on cloud water path over East Asia. Geophys. Res. Lett., 33, L19802, doi: 10.1029/2006GL026561.br, P. Minnis, B. Lin, et al., 2006c: Possible influ-ences of Asian dust aerosols on cloud properties and radiative forcing observed from MODIS and CERES. Geophys. Res. Lett., 33, L06824, doi: 10.1029/2005GL024724.br, , B. Chen, et al., 2008a: Long-range trans-port and vertical structure of Asian dust from CALIPSO and surface measurements during PACDEX. J. Geophys. Res., 113, D23212, doi: 10.1029/2008JD010620.brHuang Jianping, Huang Zhongwei, Bi Jianrong, et al., 2008b: Micro-pulse lidar measurements of aerosol vertical structure over the Loess Plateau. Atmos. Oceanic Sci. Lett., 1, 8-11.brHuang, J. P., Q. Fu, J. Su, et al., 2009: Taklimakan dust aerosol radiative heating derived from CALIPSO ob-servations using the Fu-Liou radiation model with CERES constraints. Atmos. Chem. Phys., 9, 4011-4021, doi: 10.5194/acp-9-4011-2009.br, P. Minnis, H. Yan, et al., 2010: Dust aerosol ef-fect on semi-arid climate over Northwest China de-tected from A-Train satellite measurements. Atmos. Chem. Phys., 10, 6863-6872, doi: 10.5194/acp-10-6863-2010.brHudson, J. G., and P. R. Frisbie, 1991: Cloud condensa-tion nuclei near marine stratus. J. Geophys. Res., 96, 20795-20808, doi: 10.1029/91JD02212.brHulme, M., and M. Kelly, 1993: Exploring the links between desertification and climate change. Envi-ronment, 35, 4-45.brIslam, M. N., and M. Almazroui, 2012: Direct effects and feedback of desert dust on the climate of the Ara-bian Peninsula during the wet season: A regional climate model study. Climate Dyn., 39, 2239-2250, doi: 10.1007/s00382-012-1293-4.brJacobson, M. Z., 2000: A physically-based treatment of elemental carbon optics: Implications for global di-rect forcing of aerosols. Geophys. Res. Lett., 27, 217-220, doi: 10.1029/1999GL010968.br, 2001: Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols. Na-ture, 409, 695-697, doi: 10.1038/35055518.br, 2002: Control of fossil-fuel particulate black car-bon and organic matter, possibly the most ef-fective method of slowing global warming. J. Geophys. Res., 107, ACH 16-1-ACH 16-22, doi: 10.1029/2001JD001376.brJaffe, D., T. Anderson, D. Covert, et al., 1999: Trans-port of Asian air pollution to North America. Geophys. Res. Lett., 26, 711-714, doi: 10.1029/1999GL900100.brJiang, J. H., N. J. Livesey, H. Su, et al., 2007: Con-necting surface emissions, convective uplifting, and long-range transport of carbon monoxide in the upper-troposphere: New observations from the Aura MLS. Geophys. Res. Lett., 34, L18812, doi: 10.1029/2007GL030638.br, H. Su, M. R. Schoeberl, et al., 2008: Clean and polluted clouds: Relationships among pollution, ice cloud and precipitation in South America. Geophys. Res. Lett., 35, L14804, doi: 10.1029/2008GL034631.br, , C. Zhai, et al., 2011: Influence of convection and aerosol pollution on ice cloud particle effective radius. Atmos. Chem. Phys., 11, 457-463, doi: 10. 5194/acp-11-457-2011.brJimenez, J. L., M. R. Canagaratna, N. M. Donahue, et al., 2009: Evolution of organic aerosols in the atmo-sphere. Science, 326, 1525-1529, doi: 10.1126/sci-ence.1180353.brJohnson, B. T., K. P. Shine, and P. M. Forster, 2004: The semi-direct aerosol effect: Impact of absorb-ing aerosols on marine stratocumulus. Quart. J. Roy. Meteor. Soc., 130, 1407-1422, doi: 10.1256/qj.03.61.brJones, A., D. L. Roberts, and A. Slingo, 1994: A cli-mate model study of the indirect radiative forcing by anthropogenic sulphate aerosols. Nature, 370, 450-453, doi: 10.1038/370450a0.br, , M. J. Woodage, et al., 2001: Indirect sulphate aerosol forcing in a climate model with an interactive sulphur cycle. J. Geophys. Res., 106, 20293-20310, doi: 10.1029/2000JD000089.brKaufman, Y. J., I. Koren, L. A. Remer, et al., 2005a: The effect of smoke, dust, and pollution aerosol on shallow cloud development over the Atlantic Ocean. Proc. Natl. Acad. Sci. USA, 102, 11207-11212, doi: 10.1073/pnas.0505191102.br, L. A. Remer, D. Tanre, et al., 2005b: A critical exam-ination of the residual cloud contamination and diur-nal sampling effects on MODIS estimates of aerosol over ocean. IEEE Trans. Geosci. Remote Sens., 43, 2886-2897, doi: 10.1109/TGRS.2005.858430.br, and I. Koren, 2006: Smoke and pollution aerosol effect on cloud cover. Science, 313, 655-658, doi: 10.1126/science.1126232.brKazil, J., P. Stier, K. Zhang, et al., 2010: Aerosol nu-cleation and its role for clouds and earths radia-tive forcing in the aerosol-climate model ECHAM5-HAM. Atmos. Chem. Phys., 10, 10733-10752, doi: 10.5194/acpd-10-12261-2010.brKiehl, J. T., and B. P. Briegleb, 1993: The relative roles of sulfate aerosols and greenhouse gases in climate forcing. Science, 260, 311-314, doi: 10.1126/sci-ence.260.5106.311.br, T. L. Schneider, P. J. Rasch, et al., 2000: Radia-tive forcing due to sulfate aerosols from simulations with the National Center for Atmospheric Research Community Climate Model, Version 3. J. Geophys. Res., 105, 1441-1457, doi: 10.1029/1999JD900495.brKim, D., M. Chin, H. Yu, et al., 2011: Dust optical properties over North Africa and Arabian Penin-sula derived from the AERONET dataset. Atmos. Chem. Phys., 11, 10733-10741, doi: 10.5194/acp-11-10733-2011.brKinne, S., M. Schulz, C. Textor, et al., 2006: An Aero-Com initial assessment-optical properties in aerosol component modules of global models. Atmos. Chem. Phys., 6, 1815-1834, doi: 10.5194/acp-6-1815-2006.brKishcha, P., B. Starobinets, and P. Alpert, 2007: Latitudinal variations of cloud and aerosol op-tical thickness trends based on MODIS satellite data. Geophys. Res. Lett., 34, L05810, doi: 10.1029/2006GL028796.brKoch, D., 2001: Transport and direct radiative forcing of carbonaceous and sulfate aerosols in the GISS GCM. J. Geophys. Res., 106, 20311-20332, doi: 10.1029/2001JD900038.br, and A. D. Del Genio, 2010: Black carbon semi-direct effects on cloud cover: Review and synthesis. Atmos. Chem. Phys., 10, 7685-7696, doi: 10.5194/acp-10-7685-2010.brKristjansson, J. E., 2002: Studies of the aerosol indi-rect effect from sulfate and black carbon aerosols. J. Geophys. Res., 107, AAC 1-1-AAC 1-19. doi: 10.1029/2001JD000887.brLangner, J., and H. Rodhe, 1991: A global three-dimensional model of the global sulfur cycle. J. Atmos. Chem., 13, 225-263.brLe Treut, H., M. Forichon, O. Boucher, et al., 1998: Sulfate aerosol indirect effect and COsub2/sub green-house forcing: Equilibrium response of the LMD GCM and associated cloud feedbacks. J. Climate, 11, 1673-1685, doi: 10.1175/1520-0442(1998)0111673:SAIEAC2.0.CO;2.brLi, J. N., K. Salzen, Y. R. Peng, et al., 2013: Evalua-tion of black carbon semi-direct radiative effect in a climate model. J. Geophys. Res., 118, 4715-4728, doi: 10.1002/jgrd.50327.brLi Shu, Wang Tijian, Zhuang Bingliang, et al., 2009: Indirect radiative forcing and climatic effect of the anthropogenic nitrate aerosol on regional climate of China. Adv. Atmos. Sci., 26, 543-552, doi:10.1007/s00376-009-0543-9.
  • Related Articles

  • Cited by

    Periodical cited type(58)

    1. Chenglong Zhou, Xinghua Yang, Yuzhi Liu, et al. Terrain effects of the Tibetan Plateau on dust aerosol distribution over the Tarim Basin, China. Atmospheric Research, 2024, 298: 107143. DOI:10.1016/j.atmosres.2023.107143
    2. Yuling Hu, Haipeng Yu, Shichang Kang, et al. Aerosol–meteorology feedback diminishes the transboundary transport of black carbon into the Tibetan Plateau. Atmospheric Chemistry and Physics, 2024, 24(1): 85. DOI:10.5194/acp-24-85-2024
    3. Ye Zhou, Junhua Yang, Shichang Kang, et al. Weakened black carbon trans-boundary transport to the Tibetan Plateau during the COVID-19 pandemic. Science of The Total Environment, 2024, 916: 170208. DOI:10.1016/j.scitotenv.2024.170208
    4. Sneha Gautam, A Blessy, Pullanikkat Abhilash, et al. Exploring radiative forcing sensitivity to aerosol optical properties across varied geographical regions in India. Air Quality, Atmosphere & Health, 2024. DOI:10.1007/s11869-024-01537-y
    5. Aulia Nisa’ul Khoir, Aberta Rulinri Siahaan, Ardhasena Sopaheluwakan, et al. Evaluation of MERRA-2 and MODIS C6.1 aerosol products over Indonesia. E3S Web of Conferences, 2024, 485: 06003. DOI:10.1051/e3sconf/202448506003
    6. Erick Vinicius Ramos Vieira, Nilton Evora do Rosario, Marcia Akemi Yamasoe, et al. Chemical Characterization and Optical Properties of the Aerosol in São Paulo, Brazil. Atmosphere, 2023, 14(9): 1460. DOI:10.3390/atmos14091460
    7. Run Luo, Yuzhi Liu, Min Luo, et al. Dust effects on mixed-phase clouds and precipitation during a super dust storm over northern China. Atmospheric Environment, 2023, 313: 120081. DOI:10.1016/j.atmosenv.2023.120081
    8. Ravleen Kaur Kohli, Ryan D. Davis, James F. Davies. Tutorial: Electrodynamic balance methods for single particle levitation and the physicochemical analysis of aerosol. Journal of Aerosol Science, 2023, 174: 106255. DOI:10.1016/j.jaerosci.2023.106255
    9. Vasiliki D. Bakatsoula, Marios-Bruno Korras-Carraca, Nikolaos Hatzianastassiou, et al. A comparison of atmospheric aerosol absorption properties from the MERRA-2 reanalysis with AERONET. Atmospheric Environment, 2023, 311: 119997. DOI:10.1016/j.atmosenv.2023.119997
    10. Aoxuan Chen, Jin Yang, Yan He, et al. High spatiotemporal resolution estimation of AOD from Himawari-8 using an ensemble machine learning gap-filling method. Science of The Total Environment, 2023, 857: 159673. DOI:10.1016/j.scitotenv.2022.159673
    11. Arika Bridhikitti, Pakorn Petchpayoon, Thayukorn Prabamroong. Integrated Remote Sensing Observations of Radiative Properties and Sources of the Aerosols in Southeast Asia: The Case of Thailand. Remote Sensing, 2023, 15(22): 5319. DOI:10.3390/rs15225319
    12. Hong Huang, Yan Gao, Hunan Chen, et al. Biomass briquette fuel, boiler types and pollutant emissions of industrial biomass boiler: A review. Particuology, 2023, 77: 79. DOI:10.1016/j.partic.2022.08.016
    13. Jianping Huang, Xiuji Zhou, Guoxiong Wu, et al. Global Climate Impacts of Land‐Surface and Atmospheric Processes Over the Tibetan Plateau. Reviews of Geophysics, 2023, 61(3) DOI:10.1029/2022RG000771
    14. Chenglong Zhou, Yuzhi Liu, Xinghua Yang, et al. Positive Feedback of Dust Direct Radiative Effect on Dust Emission in Taklimakan Desert. Geophysical Research Letters, 2023, 50(13) DOI:10.1029/2023GL103512
    15. Ling Huang, Hanqing Liu, Greg Yarwood, et al. Modeling of secondary organic aerosols (SOA) based on two commonly used air quality models in China: Consistent S/IVOCs contribution but large differences in SOA aging. Science of The Total Environment, 2023, 903: 166162. DOI:10.1016/j.scitotenv.2023.166162
    16. Enrique De Jesús Morales-Acuña, Sergio Aguíñiga-García, Rafael Cervantes-Duarte, et al. Estimation of the desert dust balance and its relationship with environmental factors in the southern Baja California Peninsula. Earth Science Informatics, 2023, 16(3): 2595. DOI:10.1007/s12145-023-01047-y
    17. Lambert Delbeke, Chien Wang, Pierre Tulet, et al. The impact of aerosols on stratiform clouds over southern West Africa: a large-eddy-simulation study. Atmospheric Chemistry and Physics, 2023, 23(20): 13329. DOI:10.5194/acp-23-13329-2023
    18. Chenglong Zhou, Yuzhi Liu, Qing He, et al. Dust Characteristics Observed by Unmanned Aerial Vehicle over the Taklimakan Desert. Remote Sensing, 2022, 14(4): 990. DOI:10.3390/rs14040990
    19. Tianbin Shao, Yuzhi Liu, Renruoyu Wang, et al. Role of anthropogenic aerosols in affecting different-grade precipitation over eastern China: A case study. Science of The Total Environment, 2022, 807: 150886. DOI:10.1016/j.scitotenv.2021.150886
    20. Yudie Li, Chong Wang, Xianghui Xue, et al. Study on the Parameters of Ice Clouds Based on 1.5 µm Micropulse Polarization Lidar. Remote Sensing, 2022, 14(20): 5162. DOI:10.3390/rs14205162
    21. Run Luo, Yuzhi Liu, Qingzhe Zhu, et al. Anthropogenic pollutants could enhance aridity in the vicinity of the Taklimakan Desert: A case study. Science of The Total Environment, 2022, 838: 156574. DOI:10.1016/j.scitotenv.2022.156574
    22. Hua Lu, Min Xie, Bojun Liu, et al. Impact of atmospheric thermodynamic structures and aerosol radiation feedback on winter regional persistent heavy particulate pollution in the Sichuan-Chongqing region, China. Science of The Total Environment, 2022, 842: 156575. DOI:10.1016/j.scitotenv.2022.156575
    23. Ziyuan Tan, Yuzhi Liu, Qingzhe Zhu, et al. Effect of dust aerosols on the heat exchange over the Taklimakan Desert. Atmospheric Environment, 2022, 276: 119058. DOI:10.1016/j.atmosenv.2022.119058
    24. Lan Yu, Ming Zhang, Lunche Wang, et al. Variability of surface solar radiation under clear skies over Qinghai-Tibet Plateau: Role of aerosols and water vapor. Atmospheric Environment, 2022, 287: 119286. DOI:10.1016/j.atmosenv.2022.119286
    25. Annan Chen, Chuanfeng Zhao, Tianyi Fan. Spatio-temporal distribution of aerosol direct radiative forcing over mid-latitude regions in north hemisphere estimated from satellite observations. Atmospheric Research, 2022, 266: 105938. DOI:10.1016/j.atmosres.2021.105938
    26. Chenglong Zhou, Yuzhi Liu, Qingzhe Zhu, et al. In situ observation of warm atmospheric layer and the heat contribution of suspended dust over the Tarim Basin. Atmospheric Chemistry and Physics, 2022, 22(8): 5195. DOI:10.5194/acp-22-5195-2022
    27. Yueming Cheng, Tie Dai, Hua Zhang, et al. Comparison and evaluation of the simulated annual aerosol characteristics over China with two global aerosol models. Science of The Total Environment, 2021, 763: 143003. DOI:10.1016/j.scitotenv.2020.143003
    28. Diana Francis, Jean-Pierre Chaboureau, Narendra Nelli, et al. Summertime dust storms over the Arabian Peninsula and impacts on radiation, circulation, cloud development and rain. Atmospheric Research, 2021, 250: 105364. DOI:10.1016/j.atmosres.2020.105364
    29. Longyi Shao, Jie Li, Mengyuan Zhang, et al. Morphology, composition and mixing state of individual airborne particles: Effects of the 2017 Action Plan in Beijing, China. Journal of Cleaner Production, 2021, 329: 129748. DOI:10.1016/j.jclepro.2021.129748
    30. Ling Huang, Qian Wang, Yangjun Wang, et al. Simulation of secondary organic aerosol over the Yangtze River Delta region: The impacts from the emissions of intermediate volatility organic compounds and the SOA modeling framework. Atmospheric Environment, 2021, 246: 118079. DOI:10.1016/j.atmosenv.2020.118079
    31. M.A. Posyniak, K.M. Markowicz, D. Czyzewska, et al. Experimental study of smog microphysical and optical vertical structure in the Silesian Beskids, Poland. Atmospheric Pollution Research, 2021, 12(9): 101171. DOI:10.1016/j.apr.2021.101171
    32. Min Luo, Yuzhi Liu, Qingzhe Zhu, et al. Role and Mechanisms of Black Carbon Affecting Water Vapor Transport to Tibet. Remote Sensing, 2020, 12(2): 231. DOI:10.3390/rs12020231
    33. Yuzhi Liu, Tianbin Shao, Shan Hua, et al. Association of anthropogenic aerosols with subtropical drought in East Asia. International Journal of Climatology, 2020, 40(7): 3500. DOI:10.1002/joc.6410
    34. Shan Hua, Yuzhi Liu, Run Luo, et al. Inconsistent aerosol indirect effects on water clouds and ice clouds over the Tibetan Plateau. International Journal of Climatology, 2020, 40(8): 3832. DOI:10.1002/joc.6430
    35. Yuzhi Liu, Qingzhe Zhu, Shan Hua, et al. Tibetan Plateau driven impact of Taklimakan dust on northern rainfall. Atmospheric Environment, 2020, 234: 117583. DOI:10.1016/j.atmosenv.2020.117583
    36. Di Wang, Fei Zhang, Shengtian Yang, et al. Exploring the spatial-temporal characteristics of the aerosol optical depth (AOD) in Central Asia based on the moderate resolution imaging spectroradiometer (MODIS). Environmental Monitoring and Assessment, 2020, 192(6) DOI:10.1007/s10661-020-08299-x
    37. Yueming Cheng, Tie Dai, Jiming Li, et al. Measurement Report: Determination of aerosol vertical features on different timescales over East Asia based on CATS aerosol products. Atmospheric Chemistry and Physics, 2020, 20(23): 15307. DOI:10.5194/acp-20-15307-2020
    38. Qingzhe Zhu, Yuzhi Liu, Tianbin Shao, et al. Transport of Asian aerosols to the Pacific Ocean. Atmospheric Research, 2020, 234: 104735. DOI:10.1016/j.atmosres.2019.104735
    39. Yuzhi Liu, Qingzhe Zhu, Jianping Huang, et al. Impact of dust-polluted convective clouds over the Tibetan Plateau on downstream precipitation. Atmospheric Environment, 2019, 209: 67. DOI:10.1016/j.atmosenv.2019.04.001
    40. Y. Liu, Q. Zhu, R. Wang, et al. Distribution, source and transport of the aerosols over Central Asia. Atmospheric Environment, 2019, 210: 120. DOI:10.1016/j.atmosenv.2019.04.052
    41. Yuzhi Liu, Shan Hua, Rui Jia, et al. Effect of Aerosols on the Ice Cloud Properties Over the Tibetan Plateau. Journal of Geophysical Research: Atmospheres, 2019, 124(16): 9594. DOI:10.1029/2019JD030463
    42. Rui Jia, Min Luo, Yuzhi Liu, et al. Anthropogenic Aerosol Pollution over the Eastern Slope of the Tibetan Plateau. Advances in Atmospheric Sciences, 2019, 36(8): 847. DOI:10.1007/s00376-019-8212-0
    43. Jun Zhu, Xiangao Xia, Huizheng Che, et al. Spatiotemporal variation of aerosol and potential long-range transport impact over the Tibetan Plateau, China. Atmospheric Chemistry and Physics, 2019, 19(23): 14637. DOI:10.5194/acp-19-14637-2019
    44. Yuzhi Liu, Bing Wang, Qingzhe Zhu, et al. Dominant Synoptic Patterns and Their Relationships with PM2.5 Pollution in Winter over the Beijing-Tianjin-Hebei and Yangtze River Delta Regions in China. Journal of Meteorological Research, 2019, 33(4): 765. DOI:10.1007/s13351-019-9007-z
    45. Yueming Cheng, Tie Dai, Daisuke Goto, et al. Investigating the assimilation of CALIPSO global aerosol vertical observations using a four-dimensional ensemble Kalman filter. Atmospheric Chemistry and Physics, 2019, 19(21): 13445. DOI:10.5194/acp-19-13445-2019
    46. Minjin Ma, Yue Chen, Fan Ding, et al. The Representativeness of Air Quality Monitoring Sites in the Urban Areas of a Mountainous City. Journal of Meteorological Research, 2019, 33(2): 236. DOI:10.1007/s13351-019-8145-7
    47. Qingzhe Zhu, Yuzhi Liu, Rui Jia, et al. A numerical simulation study on the impact of smoke aerosols from Russian forest fires on the air pollution over Asia. Atmospheric Environment, 2018, 182: 263. DOI:10.1016/j.atmosenv.2018.03.052
    48. Christos Spyrou. Direct radiative impacts of desert dust on atmospheric water content. Aerosol Science and Technology, 2018, 52(6): 693. DOI:10.1080/02786826.2018.1449940
    49. Regina Maura de Miranda, Maria de Fatima Andrade, Flavia Noronha Dutra Ribeiro, et al. Source apportionment of fine particulate matter by positive matrix factorization in the metropolitan area of São Paulo, Brazil. Journal of Cleaner Production, 2018, 202: 253. DOI:10.1016/j.jclepro.2018.08.100
    50. Silas Michaelides, Theodore Karacostas, Jose Luis Sánchez, et al. Reviews and perspectives of high impact atmospheric processes in the Mediterranean. Atmospheric Research, 2018, 208: 4. DOI:10.1016/j.atmosres.2017.11.022
    51. Hongke Cai, Yunfei Fu, Quanliang Chen, et al. Optical properties of cirrus transition zones over China detected by CALIOP. Journal of Meteorological Research, 2017, 31(3): 576. DOI:10.1007/s13351-017-6044-3
    52. Siyu Chen, Jianping Huang, Yun Qian, et al. An overview of mineral dust modeling over East Asia. Journal of Meteorological Research, 2017, 31(4): 633. DOI:10.1007/s13351-017-6142-2
    53. Regina Maura de Miranda, Fabio Lopes, Nilton Évora do Rosário, et al. The relationship between aerosol particles chemical composition and optical properties to identify the biomass burning contribution to fine particles concentration: a case study for São Paulo city, Brazil. Environmental Monitoring and Assessment, 2017, 189(1) DOI:10.1007/s10661-016-5659-7
    54. Yongkun Xie, Jianping Huang, Yuzhi Liu. From accelerated warming to warming hiatus in China. International Journal of Climatology, 2017, 37(4): 1758. DOI:10.1002/joc.4809
    55. Qiong Liu, Yuan Wang, Zhongyu Kuang, et al. Vertical distributions of aerosol optical properties during haze and floating dust weather in Shanghai. Journal of Meteorological Research, 2016, 30(4): 598. DOI:10.1007/s13351-016-5092-4
    56. Rui Jia, Yuzhi Liu, Bin Chen, et al. Source and transportation of summer dust over the Tibetan Plateau. Atmospheric Environment, 2015, 123: 210. DOI:10.1016/j.atmosenv.2015.10.038
    57. Y. Liu, Y. Sato, R. Jia, et al. Modeling study on the transport of summer dust and anthropogenic aerosols over the Tibetan Plateau. Atmospheric Chemistry and Physics, 2015, 15(21): 12581. DOI:10.5194/acp-15-12581-2015
    58. Arika Bridhikitti. Earth Data Analytics for Planetary Health. Atmosphere, Earth, Ocean & Space, DOI:10.1007/978-981-19-8765-6_1

    Other cited types(0)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return