Simulation and Projection of the Western Pacific Subtropical High in CMIP5 Models

PDF

  • This work examined the performance of 26 coupled climate models participating in the Coupled Model Intercomparison Project Phase 5 (CMIP5) in the simulation of the present-day temporal variability and spatial pattern of the western Pacific subtropical high (WPSH). The results show that most models are able to capture the spatial distribution and variability of the 500-hPa geopotential height and zonal wind fields in the western subtropical Pacific, but with underestimated mean intensity of the WPSH. The underestimation may be associated with the cold bias of sea surface temperature in the tropical Indian and western Pacific oceans in the models. To eliminate the impact of the climatology biases, the climatology of these models is replaced by that of the NCEP/NCAR reanalysis in the verification, and the models reproduce the WPSH's enhancement and westward extension after the late 1970s. According to assessment of the simulated WPSH indices, it is found that some models (CNRM-CM5, FGOALS-g2, FIO-ESM, MIROC-ESM, and MPI-ESM-P) are better than others in simulating WPSH. Then, the ensemble mean of these better models is used to project the future changes of WPSH under three representative concentration pathway scenarios (RCP8.5, RCP4.5, and RCP2.6). The WPSH enlarges, strengthens, and extends westward under all the scenarios, with the largest linear growth trend projected in RCP8.5, smallest in RCP2.6, and in between in RCP4.5; while the ridge line of WPSH shows no obvious long-term trend. These results may have implications for the attribution and prediction of climate variations and changes in East Asia.
  • loading

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return