ENERGY BUDGET BIAS IN GLOBAL COUPLED OCEAN-ATMOSPHERE-LAND MODEL*

PDF

  • The energy budget of the two versions of the GOALS model (GOALS-1.1 and GOALS-2) is described and compared to observational estimates.The results illustrate that the simulated surface net shortwave radiation flux is underestimated in the high-latitude regions while the surface net longwave radiation flux is substantially overestimated in that region,which results in the lower surface air temperature (SAT) of the polar region and the stronger negative sensible heat flux in high latitudes.The overestimated sensible heat flux from surface to atmosphere in the continents causes the much warmer SAT centers,which may be the reason for the bias of the model SAT. The bias that the simulated precipitation is less than observation in most regions is closely related to the underestimated latent heat flux over most of the Eurasian Continent and the oceans, especially over the subtropical oceans.It can be seen that the bias in the OLR of the two models lies in low and middle latitudes,where the absorbed solar shortwave radiation flux at the top of the atmosphere is comparable to the NCEP reanalysis,but much less than ERBE data.This indicates that the improvement of cloud-radiation parameterization scheme in low and middle latitudes is of critical importance to the simulation of global energy budget.The simulated cloud cover from the GOALS-2 model with diagnosed cloud scheme is generally less except at equatorial areas, especially in the mid-latitude areas,which causes the large bias of energy budget there.It is suggested that the refinement of cloud parameterization is one of the most important tasks in the model's future development.
  • loading

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return