Multi-Scheme Corrected Dynamic–Analogue Prediction of Summer Precipitation in Northeastern China Based on BCC_CSM

PDF

  • Based on summer precipitation hindcasts for 1991–2013 produced by the Beijing Climate Center Climate System Model (BCC_CSM), the relationship between precipitation prediction error in northeastern China (NEC) and global sea surface temperature is analyzed, and dynamic–analogue prediction is carried out to improve the summer precipitation prediction skill of BCC_CSM, through taking care of model historical analogue prediction error in the real-time output. Seven correction schemes such as the systematic bias correction, pure statistical correction, dynamic–analogue correction, and so on, are designed and compared. Independent hindcast results show that the 5-yr average anomaly correlation coefficient (ACC) of summer precipitation is respectively improved from –0.13/0.15 to 0.16/0.24 for 2009–13/1991–95 when using the equally weighted dynamic–analogue correction in the BCC_CSM prediction, which takes the arithmetical mean of the correction based on regional average error and that on grid point error. In addition, probabilistic prediction using the results from the multiple correction schemes is also performed and it leads to further improved 5-yr average prediction accuracy.
  • loading

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return