Semi-Idealized Modeling of Lightning Initiation Related to Vertical Air Motion and Cloud Microphysics

PDF

  • A three-dimensional charge–discharge numerical model is used, in a semi-idealized mode, to simulate a thunderstorm cell. Characteristics of the graupel microphysics and vertical air motion associated with the lightning initiation are revealed, which could be useful in retrieving charge strength during lightning when no charge–discharge model is available. The results show that the vertical air motion at the lightning initiation sites (Wini) has a cubic polynomial correlation with the maximum updraft of the storm cell (Wcell-max), with the adjusted regression coefficient R2 of approximately 0.97. Meanwhile, the graupel mixing ratio at the lightning initiation sites (qg-ini) has a linear correlation with the maximum graupel mixing ratio of the storm cell (qg-cell-max) and the initiation height (zini), with the coefficients being 0.86 and 0.85, respectively. These linear correlations are more significant during the middle and late stages of lightning activity. A zero-charge zone, namely, the area with very low net charge density between the main positive and negative charge layers, appears above the area of qg-cell-max and below the upper edge of the graupel region, and is found to be an important area for lightning initiation. Inside the zero-charge zone, large electric intensity forms, and the ratio of qice (ice crystal mixing ratio) to qg (graupel mixing ratio) illustrates an exponential relationship to qg-ini. These relationships provide valuable clues to more accurately locating the high-risk area of lightning initiation in thunderstorms when only dual-polarization radar data or outputs from numerical models without charging/discharging schemes are available. The results can also help understand the environmental conditions at lightning initiation sites.
  • loading

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return