Climatological Characteristics of Frontogenesis and Related Circulations over East China in June and July

+ Author Affiliations + Find other works by these authors
  • Funds:

    Supported by the National Science and Technology Support Program of China (2007BAC29B02), National Basic Research and Development (973) Program of China (2011CB403406), and Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutions.

  • doi: 10.1007/s13351-013-0202-z

PDF

  • Based on daily precipitation data from 212 stations in East China and NCEP/NCAR daily global final analysis data in June and July from 2000 to 2010, the climatological characteristics of frontogenesis and related circulations have been analyzed. The results demonstrate that frontogenesis function distributes nonuniformly in East China. The different terms of the kinematic frontogenesis show different intensities and distributions of frontogenesis. The strongest frontogenesis integrated from different kinematic frontogenesis terms is observed in the Jianghuai area. Frontogenesis events are separated into four types as per the different shear and convergence types of horizontal wind along the strong frontogenesis band at 850 hPa. The four types include the warm shear type, cold shear type (with two subtypes), west wind convergence type, and east wind convergence type. The events in different frontogenesis types occur with different frequencies over the past decade. The warm shear type occurs most frequently. Different types of frontogenesis have distinctive horizontal and vertical structures. Strong frontogenesis is featured with 340-K contour of θse parallel to the frontal zone in the vertical. Varied large-scale circulation patterns manifested in shifted location and strength of cyclone or anticyclone, wind convergence, as well as vertical circulation structure are associated with different types of frontogenesis. Moreover, a strong positive correlation between frontogenesis and precipitation is found, i.e., the stronger the frontogenesis, the more precipitation there is. Daily precipitation related to the warm shear type frontogenesis is the largest, and often occurs inside the frontal zone with the same orientation with the strong frontogenesis belt. The second largest daily precipitation occurs with the cold shear type frontogenesis, and related rainfall is usually observed to the south of the frontal zone, with the rain belt extending northeastward. Precipitation related to the west wind convergence type frontogenesis is the third largest, occurring mostly in the south of the frontal zone.
  • 加载中
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Climatological Characteristics of Frontogenesis and Related Circulations over East China in June and July

  • 1. Key Laboratory of Meteorological Disaster of Ministry of Education,Nanjing University of Information Science & Technology,Nanjing 210044;
    Jiangsu Meteorological Observatory,Nanjing 210008;
    Key Laboratory of Meteorological Disaster of Ministry of Education,Nanjing University of Information Science & Technology,Nanjing 210044
Funds: Supported by the National Science and Technology Support Program of China (2007BAC29B02), National Basic Research and Development (973) Program of China (2011CB403406), and Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutions.

Abstract: Based on daily precipitation data from 212 stations in East China and NCEP/NCAR daily global final analysis data in June and July from 2000 to 2010, the climatological characteristics of frontogenesis and related circulations have been analyzed. The results demonstrate that frontogenesis function distributes nonuniformly in East China. The different terms of the kinematic frontogenesis show different intensities and distributions of frontogenesis. The strongest frontogenesis integrated from different kinematic frontogenesis terms is observed in the Jianghuai area. Frontogenesis events are separated into four types as per the different shear and convergence types of horizontal wind along the strong frontogenesis band at 850 hPa. The four types include the warm shear type, cold shear type (with two subtypes), west wind convergence type, and east wind convergence type. The events in different frontogenesis types occur with different frequencies over the past decade. The warm shear type occurs most frequently. Different types of frontogenesis have distinctive horizontal and vertical structures. Strong frontogenesis is featured with 340-K contour of θse parallel to the frontal zone in the vertical. Varied large-scale circulation patterns manifested in shifted location and strength of cyclone or anticyclone, wind convergence, as well as vertical circulation structure are associated with different types of frontogenesis. Moreover, a strong positive correlation between frontogenesis and precipitation is found, i.e., the stronger the frontogenesis, the more precipitation there is. Daily precipitation related to the warm shear type frontogenesis is the largest, and often occurs inside the frontal zone with the same orientation with the strong frontogenesis belt. The second largest daily precipitation occurs with the cold shear type frontogenesis, and related rainfall is usually observed to the south of the frontal zone, with the rain belt extending northeastward. Precipitation related to the west wind convergence type frontogenesis is the third largest, occurring mostly in the south of the frontal zone.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return