[1] Cao, R. Y., J. Chen, M. G. Shen, et al., 2015: An improved logistic method for detecting spring vegetation phenology in grasslands from MODIS EVI time-series data. Agric. Forest Meteor., 200, 9–20. doi: 10.1016/j.agrformet.2014.09.009
[2] Chen, X. Q., S. An, D. W. Inouye, et al., 2015: Temperature and snowfall trigger alpine vegetation green-up on the world’s roof. Global Change Biol., 21, 3635–3646. doi: 10.1111/gcb.12954
[3] Ding, M. J., Q. Chen, L. H. Li, et al., 2016a: Temperature dependence of variations in the end of the growing season from 1982 to 2012 on the Qinghai–Tibetan Plateau. GISci. Remote Sens., 53, 147–163. doi: 10.1080/15481603.2015.1120371
[4] Ding, M. J., L. H. Li, Y. Nie, et al., 2016b: Spatio-temporal variation of spring phenology in Tibetan Plateau and its linkage to climate change from 1982 to 2012. J. Mt. Sci., 13, 83–94. doi: 10.1007/s11629-015-3600-0
[5] Fan, D. Q., W. Q. Zhu, Z. T. Zheng, et al., 2015: Change in the green-up dates for Quercus mongolica in Northeast China and its climate-driven mechanism from 1962 to 2012. PLoS One, 10, e0130516. doi: 10.1371/journal.pone.0130516
[6] Fu, G., and Z. M. Zhong, 2016: Initial response of phenology and aboveground biomass to experimental warming in a maize system of the Tibet. Ecol. Environ. Sci., 25, 1093–1097. (in Chinese) doi: 10.16258/j.cnki.1674-5906.2016.07.001
[7] Hutchinson, M. F., 1991: The application of thin plate smoothing splines to continent-wide data assimilation. BMRC Research Report No. 27, Data Assimilation Systems, J. D. Jasper, Ed., Bureau of Meteorology, Melbourne, 104–113.
[8] Hutchinson, M. F., 1998: Interpolation of rainfall data with thin plate smoothing splines—Part II: Analysis of topographic dependence. J. Geogr. Inf. Decis. Anal., 2, 152–167.
[9] Jeong, S. J., C. H. Ho, H. J. Gim, et al., 2011: Phenology shifts at start vs. end of growing season in temperate vegetation over the Northern Hemisphere for the period 1982–2008. Global Change Biol., 17, 2385–2399. doi: 10.1111/j.1365-2486.2011.02397.x
[10] Jin, Z. N., Q. L. Zhuang, J. S. He, et al., 2013: Phenology shift from 1989 to 2008 on the Tibetan Plateau: An analysis with a process-based soil physical model and remote sensing data. Climatic Change, 119, 435–449. doi: 10.1007/s10584-013-0722-7
[11] Jönsson, P., and L. Eklundh, 2004: TIMESAT—a program for analyzing time-series of satellite sensor data. Comput. Geosci., 30, 833–845. doi: 10.1016/j.cageo.2004.05.006
[12] Justice, C. O., J. R. G. Townshend, B. N. Holben, et al., 1985: Analysis of the phenology of global vegetation using meteorological satellite data. Int. J. Remote Sens., 6, 1271–1318. doi: 10.1080/01431168508948281
[13] Liu, J. Y., X. L. Xu, and Q. Q. Shao, 2008: Grassland degradation in the “Three-River Headwaters” region, Qinghai Province. J. Geogr. Sci., 18, 259–273. doi: 10.1007/s11442-008-0259-2
[14] Piao, S. L., M. D. Cui, A. P. Chen, et al., 2011: Altitude and temperature dependence of change in the spring vegetation green-up date from 1982 to 2006 in the Qinghai–Xizang Plateau. Agric. Forest Meteor., 151, 1599–1608. doi: 10.1016/j.agrformet.2011.06.016
[15] Qiu, B. W., J. P. Zhong, Z. H. Tang, et al., 2017: Greater phenological sensitivity on the higher Tibetan Plateau: New insights from weekly 5 km EVI2 datasets. Int. J. Biometeorol., 61, 807–820. doi: 10.1007/s00484-016-1259-z
[16] Shao, Q. Q., J. W. Fan, J. Y. Liu, et al., 2017: Target-based assessment on effects of first-stage ecological conservation and restoration project in Three-River Source Region, China and policy recommendations. Bull. Chinese Acad. Sci., 32, 35–44. (in Chinese) doi: 10.16418/j.issn.1000-3045.2017.01.005
[17] Shen, M. G., Y. H. Tang, J. Chen, et al., 2011: Influences of temperature and precipitation before the growing season on spring phenology in grasslands of the central and eastern Qinghai–Tibetan Plateau. Agric. Forest Meteor., 151, 1711–1722. doi: 10.1016/j.agrformet.2011.07.003
[18] Shen, M. G., G. X. Zhang, N. Cong, et al., 2014: Increasing altitudinal gradient of spring vegetation phenology during the last decade on the Qinghai–Tibetan Plateau. Agric. Forest Meteor., 189–190, 71–80. doi: 10.1016/j.agrformet.2014.01.003
[19] Shen, M. G., S. L. Piao, N. Cong, et al., 2015: Precipitation impacts on vegetation spring phenology on the Tibetan Plateau. Global Change Biol., 21, 3647–3656. doi: 10.1111/gcb.12961
[20] Tan, J. B., A. N. Li, and G. B. Lei, 2016: Contrast on Anusplin and Cokriging meteorological spatial interpolation in southeastern margin of Qinghai–Xizang Plateau. Plateau Meteor., 35, 875–886. (in Chinese)
[21] Wang, C. Z., H. D. Guo, L. Zhang, et al., 2015: Assessing phenological change and climatic control of alpine grasslands in the Tibetan Plateau with MODIS time series. Int. J. Biometeorol., 59, 11–23. doi: 10.1007/s00484-014-0817-5
[22] Wang, H. S., D. S. Liu, H. Lin, et al., 2015: NDVI and vegetation phenology dynamics under the influence of sunshine duration on the Tibetan Plateau. Int. J. Climatol., 35, 687–698. doi: 10.1002/joc.4013
[23] Wang, J., J. Dong, Y. Yi, et al., 2017: Decreasing net primary production due to drought and slight decreases in solar radiation in China from 2000 to 2012. J. Geophys. Res. Biogeosci., 122, 261–278. doi: 10.1002/2016JG003417
[24] Wang, J. B., J. W. Wang, H. Ye, et al., 2017: An interpolated temperature and precipitation dataset at 1-km grid resolution in China (2000–2012). China Sci. Data, 2, 73–80. (in Chinese) doi: 10.11922/csdata.170.2016.0112
[25] Wu, J., S. P. Serbin, X. T. Xu, et al., 2017: The phenology of leaf quality and its within-canopy variation is essential for accurate modeling of photosynthesis in tropical evergreen forests. Global Change Biol., 23, 4814–4827. doi: 10.1111/gcb.13725
[26] Zhang, G. L., Y. J. Zhang, J. W. Dong, et al., 2013: Green-up dates in the Tibetan Plateau have continuously advanced from 1982 to 2011. Proc. Natl. Acad. Sci. USA, 110, 4309–4314. doi: 10.1073/pnas.1210423110
[27] Zhao, J. J., Y. Y. Wang, Z. X. Zhang, et al., 2016: The variations of land surface phenology in Northeast China and its responses to climate change from 1982 to 2013. Remote Sens., 8, 400. doi: 10.3390/rs8050400
[28] Zhu, J. T., Y. J. Zhang, and W. F. Wang, 2016: Interactions between warming and soil moisture increase overlap in reproductive phenology among species in an alpine meadow. Biol. Lett., 12, 20150749. doi: 10.1098/rsbl.2015.0749