[1] Bretherton, C. S., M. Widmann, V. P. Dymnikov, et al., 1999: The effective number of spatial degrees of freedom of a time-varying field. J. Climate, 12, 1990–2009. doi: 10.1175/1520-0442(1999)012<1990:TENOSD>2.0.CO;2
[2] Brönnimann, S., 2007: Impact of El Niño–Southern Oscillation on European climate. Rev. Geophys., 45, RG3003. doi: 10.1029/2006RG000199
[3] Cai, M., and K. K. Tung, 2012: Robustness of dynamical feedbacks from radiative forcing: 2% solar versus 2 × CO2 experiments in an idealized GCM. J. Atmos. Sci., 69, 2256–2271. doi: 10.1175/JAS-D-11-0117.1
[4] Cionni, I., V. Eyring, J. F. Lamarque, et al., 2011: Ozone database in support of CMIP5 simulations: results and corresponding radiative forcing. Atmos. Chem. Phys., 11, 11,267–11,292. doi: 10.5194/acp-11-11267-2011
[5] Dai, A. G., and T. M. L. Wigley, 2000: Global patterns of ENSO-induced precipitation. Geophys. Res. Lett., 27, 1283–1286. doi: 10.1029/1999GL011140
[6] de Szoeke, S. P., S. P. Xie, T. Miyama, et al., 2007: What maintains the SST front north of the eastern Pacific equatorial cold tongue? J. Climate, 20, 2500–2514. doi: 10.1175/JCLI4173.1
[7] Diaconis, P., and B. Efron, 1983: Computer-intensive methods in statistics. Sci. Amer., 248, 116–130. doi: 10.1038/scientificamerican0583-116
[8] Dima, M., and M. Voiculescu, 2016: Global patterns of solar influence on high cloud cover. Climate Dyn., 47, 667–678. doi: 10.1007/s00382-015-2862-0
[9] Du, Y., and S. P. Xie, 2008: Role of atmospheric adjustments in the tropical Indian Ocean warming during the 20th century in climate models. Geophys. Res. Lett., 35, L08712. doi: 10.1029/2008GL033631
[10] Flato, G., J. Marotzke, B. Abiodun, et al., 2013: Evaluation of Climate Models. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Stocker, T. F., D. Qin, G. -K. Plattner, et al., Eds., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 741–866.
[11] Frame, T. H. A., and L. J. Gray, 2010: The 11-yr solar cycle in ERA-40 data: An update to 2008. J. Climate, 23, 2213–2222. doi: 10.1175/2009JCLI3150.1
[12] Gershunov, A., and T. P. Barnett, 1998: ENSO influence on intraseasonal extreme rainfall and temperature frequencies in the contiguous United States: Observations and model results. J. Climate., 11, 1575–1586. doi: 10.1175/1520-0442(1998)011<1575:EIOIER>2.0.CO;2
[13] Good, S. A., M. J. Martin, and N. A. Rayner, 2013: EN4: Quality controlled ocean temperature and salinity profiles and monthly objective analyses with uncertainty estimates. J. Geophys. Res. Oceans, 118, 6704–6716. doi: 10.1002/2013JC009067
[14] Gray, L. J., S. A. Crooks, M. A. Palmer, et al., 2006: A possible transfer mechanism for the 11-year solar cycle to the lower stratosphere. Space Sci. Rev., 125, 357–370. doi: 10.1007/s11214-006-9069-y
[15] Gray, L. J., S. T. Rumbold, and K. P. Shine, 2009: Stratospheric temperature and radiative forcing response to 11-year solar cycle changes in irradiance and ozone. J. Atmos. Sci., 66, 2402–2417. doi: 10.1175/2009JAS2866.1
[16] Haam, E., and K. K. Tung, 2012: Statistics of solar cycle–La Niña connection: Correlation of two autocorrelated time series. J. Atmos. Sci., 69, 2934–2939. doi: 10.1175/jas-d-12-0101.1
[17] Huo, W. J. and Z. N. Xiao, 2017a: Anomalous pattern of ocean heat content during different phases of the solar cycle in the tropical Pacific. Atmos. Ocean. Sci. Lett., 10, 9–16. doi: 10.1080/16742834.2017.1247412
[18] Huo, W. J., and Z. N., Xiao, 2017b: Modulations of solar activity on El Niño Modoki and possible mechanisms. J. Atmos. So-lar-Terr. Phys., 160, 34–47. doi: 10.1016/j.jastp.2017.05.008
[19] Khodri, M., T. Izumo, J. Vialard, et al., 2017: Tropical explosive volcanic eruptions can trigger El Niño by cooling tropical Africa. Nat. Commun., 8, 778. doi: 10.1038/s41467-017-00755-6
[20] Kodera, K., and Y. Kuroda, 2002: Dynamical response to the solar cycle. J. Geophys. Res. Atmos., 107, 4749. doi: 10.1029/2002JD002224
[21] Kodera, K., R. Thiéblemont, S. Yukimoto, et al., 2016: How can we understand the global distribution of the solar cycle signal on the Earth’s surface? Atmos. Chem. Phys., 16, 12,925–12,944. doi: 10.5194/acp-16-12925-2016
[22] Kopp, G., and J. L. Lean, 2011: A new, lower value of total solar irradiance: Evidence and climate significance. Geophys. Res. Lett., 38, L01706. doi: 10.1029/2010GL045777
[23] Kosaka, Y., and S. P. Xie, 2013: Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature, 501, 403–407. doi: 10.1038/nature12534
[24] Li, G., and S. P. Xie, 2014: Tropical biases in CMIP5 multimodel ensemble: The excessive equatorial Pacific cold tongue and double ITCZ problems. J. Climate, 27, 1765–1780. doi: 10.1175/JCLI-D-13-00337.1
[25] Matthes, K., Y. Kuroda, K. Kodera, et al., 2006: Transfer of the solar signal from the stratosphere to the troposphere: Northern winter. J. Geophys. Res. Atmos., 111, D06108. doi: 10.1029/2005JD006283
[26] Meehl, G. A., and J. M. Arblaster, 2009: A lagged warm event-like response to peaks in solar forcing in the Pacific region. J. Climate, 22, 3647–3660. doi: 10.1175/2009JCLI2619.1
[27] Meehl, G. A., J. M. Arblaster, G. Branstator, et al., 2008: A coupled air–sea response mechanism to solar forcing in the Pacific region. J. Climate, 21, 2883–2897. doi: 10.1175/2007JCLI1776.1
[28] Meehl, G. A., M. Arblaster, J. K. Matthes, et al., 2009: Amplifying the Pacific climate system response to a small 11-year solar cycle forcing. Science, 325, 1114–1118. doi: 10.1126/science.1172872
[29] Misios, S., and H. Schmidt, 2012: Mechanisms involved in the amplification of the 11-yr solar cycle signal in the tropical Pacific Ocean. J. Climate, 25, 5102–5118. doi: 10.1175/JCLI-D-11-00261.1
[30] Misios, S., D. M. Mitchell, L. J. Gray, et al., 2016: Solar signals in CMIP-5 simulations: effects of atmosphere–ocean coupling. Quart. J. Roy. Meteor. Soc., 142, 928–941. doi: 10.1002/qj.2695
[31] Misios, S., L. J. Gray, M. F. Knudsen, et al., 2019: Slowdown of the Walker circulation at solar cycle maximum. Proc. Natl. Acad. Sci. USA, 116, 7186–7191. doi: 10.1073/pnas.1815060116
[32] Philander, S. G. H., 1981: The response of equatorial oceans to a relaxation of the trade winds. J. Phys. Oceanogr., 11, 176–189. doi: 10.1175/1520-0485(1981)011<0176:TROEOT>2.0.CO;2
[33] Pyper, B. J., and R. M. Peterman, 1998: Comparison of methods to account for autocorrelation in correlation analyses of fish data. Can. J. Fish. Aquat. Sci., 55, 2127–2140. doi: 10.1139/f98-104
[34] Roy, I., and J. D. Haigh, 2010: Solar cycle signals in sea level pressure and sea surface temperature. Atmos. Chem. Phys., 10, 3147–3153. doi: 10.5194/acp-10-3147-2010
[35] Roy, I., and J. D. Haigh, 2012: Solar cycle signals in the Pacific and the issue of timings. J. Atmos. Sci., 69, 1446–1451. doi: 10.1175/jas-d-11-0277.1
[36] Schneider, E. K., and M. Z. Fan, 2012: Observed decadal North Atlantic tripole SST variability. Part II: Diagnosis of mechanisms. J. Atmos. Sci., 69, 51–64. doi: 10.1175/JAS-D-11-019.1
[37] Thiéblemont, R., K. Matthes, N. E. Omrani, et al., 2015: Solar forcing synchronizes decadal North Atlantic climate variability. Nat. Commun., 6, 8268. doi: 10.1038/ncomms9268
[38] Tung, K. K., and J. S. Zhou, 2010: The Pacific’s response to surface heating in 130 yr of SST: La Niña–like or El Niño–like? J. Atmos. Sci., 67, 2649–2657. doi: 10.1175/2010JAS3510.1
[39] van Loon, H., G. A. Meehl, and D. J. Shea, 2007: Coupled air–sea response to solar forcing in the Pacific region during northern winter. J. Geophys. Res. Atmos., 112, D02108. doi: 10.1029/2006JD007378
[40] Wang, W. K., K. Matthes, W. S. Tian, et al., 2019: Solar impacts on decadal variability of tropopause temperature and lower stratospheric (LS) water vapour: a mechanism through ocean-atmosphere coupling. Climate Dyn., 52, 5585–5604. doi: 10.1007/s00382-018-4464-0
[41] Wang, Y. M., J. L. Lean, and N. R. Jr. Sheeley, 2005: Modeling the Sun’s magnetic field and irradiance since 1713. Astrophys. J., 625, 522–538. doi: 10.1086/429689
[42] Ward, P. J., B. Jongman, M. Kummu, et al., 2014: Strong influence of El Niño Southern Oscillation on flood risk around the world. Proc. Natl. Acad. Sci. USA, 111, 15,659–15,664. doi: 10.1073/pnas.1409822111
[43] White, W. B., and Z. Y. Liu, 2008: Resonant excitation of the quasi-decadal oscillation by the 11-year signal in the Sun’s irradiance. J. Geophys. Res. Oceans, 113, C01002. doi: 10.1029/2006JC004057
[44] White, W. B., J. Lean, D. R. Cayan, et al., 1997: Response of global upper ocean temperature to changing solar irradiance. J. Geophys. Res. Oceans, 102, 3255–3266. doi: 10.1029/96JC03549
[45] Wilks, D. S., 2016: “The stippling shows statistically significant grid points”: How research results are routinely overstated and overinterpreted, and what to do about it. Bull. Amer. Meteor. Soc., 97, 2263–2273. doi: 10.1175/BAMS-D-15-00267.1
[46] Xiao, Z. N., Y. C. Liao, and C. Y. Li, 2016: Possible impact of so-lar activity on the convection dipole over the tropical pacific ocean. J. Atmos. Solar-Terr. Phys., 140, 94–107. doi: 10.1016/j.jastp.2016.02.008
[47] Xie, S. P., C. Deser, G. A. Vecchi, et al., 2010: Global warming pattern formation: Sea surface temperature and rainfall. J. Climate, 23, 966–986. doi: 10.1175/2009JCLI3329.1
[48] Zhang, Y., J. M. Wallace, and D. S. Battisti, 1997: ENSO-like interdecadal variability: 1900–93. J. Climate, 10, 1004–1020. doi: 10.1175/1520-0442(1997)010<1004:ELIV>2.0.CO;2
[49] Zhou, T. J., B. Wu, and L. Dong, 2014: Advances in research of ENSO changes and the associated impacts on Asian-Pacific climate. Asia-Pac. J. Atmos. Sci., 50, 405–422. doi: 10.1007/s13143-014-0043-4