[1] Bao, X. W., L. G. Wu, B. Tang, et al., 2019: Variable raindrop size distributions in different rainbands associated with Typhoon Fitow (2013). J. Geophys. Res. Atmos., 124, 12,262–12,281. doi: 10.1029/2019JD030268
[2] Bao, X. W., L. G. Wu, S. Zhang, et al., 2020a: Distinct raindrop size distributions of convective inner- and outer-rainband rain in Typhoon Maria (2018). J. Geophys. Res. Atmos., 125, e2020JD032482. doi: 10.1029/2020JD032482
[3] Bao, X. W., L. G. Wu, S. Zhang, et al., 2020b: A comparison of convective raindrop size distributions in the eyewall and spiral rainbands of Typhoon Lekima (2019). Geophys. Res. Lett., 47, e2020GL090729. doi: 10.1029/2020GL090729
[4] Beard, K. V., and R. J. Kubesh, 1991: Laboratory measurements of small raindrop distortion. Part 2: Oscillation frequencies and modes. J. Atmos. Sci., 48, 2245–2264. doi: 10.1175/1520-0469(1991)048<2245:Lmosrd>2.0.Co;2
[5] Beard, K. V., V. N. Bringi, and M. Thurai, 2010: A new understanding of raindrop shape. Atmos. Res., 97, 396–415. doi: 10.1016/j.atmosres.2010.02.001
[6] Brandes, E. A., G. F. Zhang, and J. Vivekanandan, 2002: Experiments in rainfall estimation with a polarimetric radar in a subtropical environment. J. Appl. Meteor., 41, 674–685. doi: 10.1175/1520-0450(2002)041<0674:EIREWA>2.0.CO;2
[7] Bringi, V. N., and V. Chandrasekar, 2001: Polarimetric Doppler Weather Radar: Principles and Applications. Cambridge University Press, Cambridge, 664 pp.
[8] Bringi, V. N., V. Chandrasekar, J. Hubbert, et al., 2003: Raindrop size distribution in different climatic regimes from disdrometer and dual-polarized radar analysis. J. Atmos. Sci., 60, 354–365. doi: 10.1175/1520-0469(2003)060<0354:rsdidc>2.0.co;2
[9] Bringi, V. N., C. R. Williams, M. Thurai, et al., 2009: Using dual-polarized radar and dual-frequency profiler for DSD characterization: A case study from Darwin, Australia. J. Atmos. Oceanic Technol., 26, 2107–2122. doi: 10.1175/2009JTECHA1258.1
[10] Cao, Q., G. F. Zhang, E. Brandes, et al., 2008: Analysis of video disdrometer and polarimetric radar data to characterize rain microphysics in Oklahoma. J. Appl. Meteor. Climatol., 47, 2238–2255. doi: 10.1175/2008jamc1732.1
[11] Cao, Q., M. B. Yeary, and G. F. Zhang, 2012: Efficient ways to learn weather radar polarimetry. IEEE Trans. Educ., 55, 58–68. doi: 10.1109/te.2011.2118211
[12] Chakravarty, K., and P. E. Raj, 2013: Raindrop size distributions and their association with characteristics of clouds and precipitation during monsoon and post-monsoon periods over a tropical Indian station. Atmos. Res., 124, 181–189. doi: 10.1016/j.atmosres.2013.01.005
[13] Chandrasekar, V., W. Y. Li, and B. Zafar, 2005: Estimation of raindrop size distribution from spaceborne radar observations. IEEE Trans. Geosci. Remote Sens., 43, 1078–1086. doi: 10.1109/TGRS.2005.846130
[14] Chang, W. Y., T. C. C. Wang, and P. L. Lin, 2009: Characteristics of the raindrop size distribution and drop shape relation in typhoon systems in the western Pacific from the 2D video disdrometer and NCU C-band polarimetric radar. J. Atmos. Oceanic Technol., 26, 1973–1993. doi: 10.1175/2009JTECHA1236.1
[15] Chen, B. J., Y. Wang, and J. Ming, 2012: Microphysical characteristics of the raindrop size distribution in Typhoon Morakot (2009). J. Trop. Meteor., 18, 162–171, https://jtm.it mm.org.cn/en/article/doi/10.3969/j.issn.1006-8775.2012.02.006.
[16] Chen, B. J., Z. Q. Hu, L. P. Liu, et al., 2017: Raindrop size distribution measurements at 4,500 m on the Tibetan Plateau during TIPEX-III. J. Geophys. Res. Atmos., 122, 11092–11106. doi: 10.1002/2017JD027233
[17] Gorgucci, E., G. Scarchilli, V. Chandrasekar, et al., 2000: Measurement of mean raindrop shape from polarimetric radar observations. J. Atmos. Sci., 57, 3406–3413. doi: 10.1175/1520-0469(2000)057<3406:momrsf>2.0.co;2
[18] Gorgucci, E., G. Scarchilli, V. Chandrasekar, et al., 2001: Rainfall estimation from polarimetric radar measurements: Composite algorithms immune to variability in raindrop shape–size relation. J. Atmos. Oceanic Technol., 18, 1773–1786. doi: 10.1175/1520-0426(2001)018<1773:Refprm>2.0.Co;2
[19] Gorgucci, E., V. Chandrasekar, V. N. Bringi, et al., 2002: Estimation of raindrop size distribution parameters from polarimetric radar measurements. J. Atmos. Sci., 59, 2373–2384. doi: 10.1175/1520-0469(2002)059<2373:Eorsdp>2.0.Co;2
[20] Houze, R. A. Jr., 2010: Clouds in tropical cyclones. Mon. Wea. Rev., 138, 293–344. doi: 10.1175/2009mwr2989.1
[21] Huang, J. C., C. K. Yu, J. Y. Lee, et al., 2012: Linking typhoon tracks and spatial rainfall patterns for improving flood lead time predictions over a mesoscale mountainous watershed. Water Resour. Res., 48, . doi: 10.1029/2011wr011508
[22] Ishimaru, A., 1991: Electromagnetic Wave Propagation, Radiation, and Scattering. Prentice-Hall, London, 637 pp.
[23] Ji, L., H. N. Chen, L. Li, et al., 2019: Raindrop size distributions and rain characteristics observed by a PARSIVEL disdrome-ter in Beijing, northern China. Remote Sens., 11, 1479. doi: 10.3390/rs11121479
[24] Kidd, C., A. Becker, G. J. Huffman, et al., 2017: So, how much of the earth’s surface is covered by rain gauges. Bull. Amer. Meteor. Soc., 98, 69–78. doi: 10.1175/BAMS-D-14-00283.1
[25] Kruger, A., and W. F. Krajewski, 2002: Two-dimensional video disdrometer: A description. J. Atmos. Oceanic Technol., 19, 602–617. doi: 10.1175/1520-0426(2002)019<0602:TDVDAD>2.0.CO;2
[26] Lee, G. W., 2006: Sources of errors in rainfall measurements by polarimetric radar: Variability of drop size distributions, observational noise, and variation of relationships between R and polarimetric parameters. J. Atmos. Oceanic Technol., 23, 1005–1028. doi: 10.1175/JTECH1899.1
[27] Liu, D. F., L. Pang, and B. T. Xie, 2009: Typhoon disaster in China: Prediction, prevention, and mitigation. Nat. Hazards, 49, 421–436. doi: 10.1007/s11069-008-9262-2
[28] Lu, X. Q., H. Yu, M. Ying, et al., 2021: Western North Pacific tropical cyclone database created by the China Meteorological Administration. Adv. Atmos. Sci., 38, 690–699. doi: 10.1007/s00376-020-0211-7
[29] Maki, M., T. D. Keenan, Y. Sasaki, et al., 2001: Characteristics of the raindrop size distribution in tropical continental squall lines observed in Darwin, Australia. J. Appl. Meteor., 40, 1393–1412. doi: 10.1175/1520-0450(2001)040<1393:cotrsd>2.0.co;2
[30] Seliga, T. A., and V. N. Bringi, 1976: Potential use of radar differential reflectivity measurements at orthogonal polarizations for measuring precipitation. J. Appl. Meteor., 15, 69–76. doi: 10.1175/1520-0450(1976)015<0069:Puordr>2.0.Co;2
[31] Skwira, G. D., J. L. Schroeder, and R. E. Peterson, 2005: Surface observations of landfalling hurricane rainbands. Mon. Wea. Rev., 133, 454–465. doi: 10.1175/mwr-2866.1
[32] Tang, Q., H. Xiao, C. W. Guo, et al., 2014: Characteristics of the raindrop size distributions and their retrieved polarimetric radar parameters in northern and southern China. Atmos. Res., 135–136, 59–75. doi: 10.1016/j.atmosres.2013.08.003
[33] Testud, J., S. Oury, R. A. Black, et al., 2001: The concept of “normalized” distribution to describe raindrop spectra: A tool for cloud physics and cloud remote sensing. J. Appl. Meteor., 40, 1118–1140. doi: 10.1175/1520-0450(2001)040<1118:Tcondt>2.0.Co;2
[34] Thurai, M., G. J. Huang, V. N. Bringi, et al., 2007: Drop shapes, model comparisons, and calculations of polarimetric radar parameters in rain. J. Atmos. Oceanic Technol., 24, 1019–1032. doi: 10.1175/jtech2051.1
[35] Thurai, M., V. N. Bringi, and P. T. May, 2010: CPOL radar-derived drop size distribution statistics of stratiform and convective rain for two regimes in Darwin, Australia. J. Atmos. Oceanic Technol., 27, 932–942. doi: 10.1175/2010jtecha1349.1
[36] Thurai, M., P. N. Gatlin, and V. N. Bringi, 2016: Separating stratiform and convective rain types based on the drop size distribution characteristics using 2D video disdrometer data. Atmos. Res., 169, 416–423. doi: 10.1016/j.atmosres.2015.04.011
[37] Tokay, A., and D. A. Short, 1996: Evidence from tropical raindrop spectra of the origin of rain from stratiform versus convective clouds. J. Appl. Meteor., 35, 355–371. doi: 10.1175/1520-0450(1996)035<0355:eftrso>2.0.co;2
[38] Tokay, A., P. G. Bashor, E. Habib, et al., 2008: Raindrop size distribution measurements in tropical cyclones. Mon. Wea. Rev., 136, 1669–1685. doi: 10.1175/2007mwr2122.1
[39] Ulbrich, C. W., 1983: Natural variations in the analytical form of the raindrop size distribution. J. Appl. Meteor. Climatol., 22, 1764–1775. doi: 10.1175/1520-0450(1983)022<1764:Nvitaf>2.0.Co;2
[40] Ulbrich, C. W., and D. Atlas, 1998: Rainfall microphysics and radar properties: Analysis methods for drop size spectra. J. Appl. Meteor., 37, 912–923. doi: 10.1175/1520-0450(1998)037<0912:rmarpa>2.0.co;2
[41] Ulbrich, C. W., and L. G. Lee, 2002: Rainfall characteristics associated with the remnants of tropical storm helene in upstate South Carolina. Wea. Forecasting, 17, 1257–1267. doi: 10.1175/1520-0434(2002)017<1257:rcawtr>2.0.co;2
[42] Wang, M. J., K. Zhao, M. Xue, et al., 2016: Precipitation microphysics characteristics of a Typhoon Matmo (2014) rainband after landfall over eastern China based on polarimetric radar observations. J. Geophys. Res. Atmos., 121, 12,415–12,433. doi: 10.1002/2016jd025307
[43] Wang, M. J., K. Zhao, W.-C. Lee, et al., 2018: Microphysical and kinematic structure of convective-scale elements in the inner rainband of Typhoon Matmo (2014) after landfall. J. Geophys. Res. Atmos., 123, 6549–6564. doi: 10.1029/2018JD028578
[44] Wang, Y. Q., 2002: Vortex rossby waves in a numerically simulated tropical cyclone. Part II: The role in tropical cyclone structure and intensity changes. J. Atmos. Sci., 59, 1239–1262. doi: 10.1175/1520-0469(2002)059<1239:Vrwian>2.0.Co;2
[45] Wen, L., K. Zhao, G. F. Zhang, et al., 2016: Statistical characteristics of raindrop size distributions observed in East China during the Asian summer monsoon season using 2-D video disdrometer and micro rain radar data. J. Geophys. Res. Atmos., 121, 2265–2282. doi: 10.1002/2015jd024160
[46] Wen, L., K. Zhao, G. Chen, et al., 2018: Drop size distribution characteristics of seven typhoons in China. J. Geophys. Res. Atmos., 123, 6529–6548. doi: 10.1029/2017JD027950
[47] Willmott, C. J., S. M. Robeson, and K. Matsuura, 2012: A refined index of model performance. Int. J. Climatol., 32, 2088–2094. doi: 10.1002/joc.2419
[48] Willoughby, H. E., F. D. Marks, and R. J. Feinberg, 1984: Stationary and moving convective bands in hurricanes. J. Atmos. Sci., 41, 3189–3211. doi: 10.1175/1520-0469(1984)041<3189:Samcbi>2.0.Co;2
[49] Wu, D., K. Zhao, M. R. Kumjian, et al., 2018: Kinematics and microphysics of convection in the outer rainband of Typhoon Nida (2016) revealed by polarimetric radar. Mon. Wea. Rev., 146, 2147–2159. doi: 10.1175/mwr-d-17-0320.1
[50] Wu, Z. H., Y. Zhang, L. F. Zhang, et al., 2019: Characteristics of summer season raindrop size distribution in three typical regions of western Pacific. J. Geophys. Res. Atmos., 124, 4054–4073. doi: 10.1029/2018JD029194
[51] Ying, M., W. Zhang, H. Yu, et al., 2014: An overview of the China Meteorological Administration tropical cyclone database. J. Atmos. Oceanic Technol., 31, 287–301. doi: 10.1175/jtech-d-12-00119.1
[52] Yue, C. J., P. Y. Chen, X. T. Lei, et al., 2006: A preliminary study on method of quantitative precipitation estimation (QPE) for landfall typhoon. Scientia Meteor. Sinica, 26, 17–23. (in Chinese) doi: 10.3969/j.issn.1009-0827.2006.01.003
[53] Zhang, G., J. Vivekanandan, and E. A. Brandes, 2001: A method for estimating rain rate and drop size distribution from polarimetric radar measurements. IEEE Trans. Geosci. Remote Sens., 39, 830–841. doi: 10.1109/36.917906
[54] Zhang, H. S., Y. Zhang, H. R. He, et al., 2017: Comparison of raindrop size distributions in a midlatitude continental squall line during different stages as measured by parsivel over East China. J. Appl. Meteor. Climatol., 56, 2097–2111. doi: 10.1175/JAMC-D-16-0336.1
[55] Zhao, K., H. Huang, M. J. Wang, et al., 2019: Recent progress in dual-polarization radar research and applications in China. Adv. Atmos. Sci., 36, 961–974. doi: 10.1007/s00376-019-9057-2
[56] Zheng, H. P., Y. Zhang, L. F. Zhang, et al., 2021: Precipitation microphysical processes in the inner rainband of Tropical Cyclone Kajiki (2019) over the South China Sea revealed by polarimetric radar. Adv. Atmos. Sci., 38, 65–80. doi: 10.1007/s00376-020-0179-3