[1] AchutaRao, K., and K. R. Sperber, 2006: ENSO simulation in coupled ocean–atmosphere models: Are the current models better? Climate Dyn., 27, 1–15. doi: 10.1007/s00382-006-0119-7
[2] Alexander, M. A., D. J. Vimont, P. Chang, et al., 2010: The impact of extratropical atmospheric variability on ENSO: Testing the seasonal footprinting mechanism using coupled model experiments. J. Climate, 23, 2885–2901. doi: 10.1175/2010JCLI3205.1
[3] Annamalai, H., S.-P. Xie, J.-P. McCreary, et al., 2005: Impact of Indian Ocean sea surface temperature on developing El Niño. J. Climate, 18, 302–319. doi: 10.1175/JCLI-3268.1
[4] Ashok, K., S. K. Behera, S. A. Rao, et al., 2007: El Niño Modoki and its possible teleconnection. J. Geophys. Res. Oceans, 112, C11007. doi: 10.1029/2006JC003798
[5] Battisti, D. S., and A. C. Hirst, 1989: Interannual variability in a tropical atmosphere–ocean model: Influence of the basic state, ocean geometry and nonlinearity. J. Atmos. Sci., 46, 1687–1712. doi: 10.1175/1520-0469(1989)046<1687:IVIATA>2.0.CO;2
[6] Behringer, D. W., M. Ji, and A. Leetmaa, 1998: An improved coupled model for ENSO prediction and implications for ocean initialization. Part I: The ocean data assimilation system. Mon. Wea. Rev., 126, 1013–1021. doi: 10.1175/1520-0493(1998)126<1013:AICMFE>2.0.CO;2
[7] Bellenger, H., E. Guilyardi, J. Leloup, et al., 2014: ENSO representation in climate models: From CMIP3 to CMIP5. Climate Dyn., 42, 1999–2018. doi: 10.1007/s00382-013-1783-z
[8] Bjerknes, J., 1969: Atmospheric teleconnections from the equatorial Pacific. Mon. Wea. Rev., 97, 163–172. doi: 10.1175/1520-0493(1969)097<0163:ATFTEP>2.3.CO;2
[9] Chen, L., and Y. Q. Yu, 2014: Preliminary evaluations of ENSO-related cloud and water vapor feedbacks in FGOALS. Flexible Global Ocean–Atmosphere–Land System Model: A Modeling Tool for the Climate Change Research Community, T. J. Zhou, Y. Q. Yu, Y. M. Liu, et al., Eds., Springer, Berlin, 189–197, doi: 10.1007/978-3-642-41801-3_23.
[10] Chen, L., Y. Q. Yu, and D.-Z. Sun, 2013: Cloud and water vapor feedbacks to the El Niño warming: Are they still biased in CMIP5 models? J. Climate, 26, 4947–4961. doi: 10.1175/JCLI-D-12-00575.1
[11] Chen, L., T. Li, S. K. Behera, et al., 2016a: Distinctive precursory air–sea signals between regular and super El Niños. Adv. Atmos. Sci., 33, 996–1004. doi: 10.1007/s00376-016-5250-8
[12] Chen, L., Y. Q. Yu, and W. P. Zheng, 2016b: Improved ENSO simulation from climate system model FGOALS-g1.0 to FGOALS-g2. Climate Dyn., 47, 2617–2634. doi: 10.1007/s00382-016-2988-8
[13] Chen, L., T. Li, B. Wang, et al., 2017: Formation mechanism for 2015/16 super El Niño. Sci. Rep., 7, 2975. doi: 10.1038/s41598-017-02926-3
[14] Chen, L. X., M. Dong, and Y. N. Shao, 1992: The characteristics of interannual variations on the East-Asian monsoon. J. Meteor. Soc. Japan, 70, 397–421. doi: 10.2151/jmsj1965.70.1B_397
[15] Chen, M. C., and T. Li, 2018: Why 1986 El Niño and 2005 La Niña evolved different from a typical El Niño and La Niña. Climate Dyn., 51, 4309–4327. doi: 10.1007/s00382-017-3852-1
[16] Chen, M. C., T. Li, X. Y. Shen, et al., 2016: Relative roles of dynamic and thermodynamic processes in causing evolution asymmetry between El Niño and La Niña. J. Climate, 29, 2201–2220. doi: 10.1175/JCLI-D-15-0547.1
[17] Chen, S. F., B. Yu, and W. Chen, 2014: An analysis on the physical process of the influence of AO on ENSO. Climate Dyn., 42, 973–989. doi: 10.1007/s00382-012-1654-z
[18] Chen, W., H.-F. Graf, and R.-H. Huang, 2000: The interannual variability of East Asian winter monsoon and its relation to the summer monsoon. Adv. Atmos. Sci., 17, 48–60. doi: 10.1007/s00376-000-0042-5
[19] Chen, W., X. Q. Lan, L. Wang, et al., 2013: The combined effects of the ENSO and the Arctic Oscillation on the winter climate anomalies in East Asia. Chinese Sci. Bull., 58, 1355–1362. doi: 10.1007/s11434-012-5654-5
[20] Chen, Z., R. G. Wu, and W. Chen, 2014: Distinguishing interannual variations of the northern and southern modes of the East Asian winter monsoon. J. Climate, 27, 835–851. doi: 10.1175/JCLI-D-13-00314.1
[21] Chung, P. H., and T. Li, 2013: Interdecadal relationship between the mean state and El Niño types. J. Climate, 26, 361–379. doi: 10.1175/JCLI-D-12-00106.1
[22] Fedorov, A. V., and S. G. Philander, 2001: A stability analysis of tropical ocean–atmosphere interactions: Bridging measurements and theory for El Niño. J. Climate, 14, 3086–3101. doi: 10.1175/1520-0442(2001)014<3086:ASAOTO>2.0.CO;2
[23] Gong, D. Y., S. W. Wang, and J. H. Zhu, 2001: East Asian winter monsoon and Arctic oscillation. Geophys. Res. Lett., 28, 2073–2076. doi: 10.1029/2000GL012311
[24] Gong, H. N., L. Wang, W. Chen, et al., 2014: The climatology and interannual variability of the East Asian winter monsoon in CMIP5 models. J. Climate, 27, 1659–1678. doi: 10.1175/JCLI-D-13-00039.1
[25] Gong, H. N., L. Wang, W. Chen, et al., 2015: Diverse influences of ENSO on the East Asian–western Pacific winter climate tied to different ENSO properties in CMIP5 models. J. Climate, 28, 2187–2202. doi: 10.1175/JCLI-D-14-00405.1
[26] Gong, H. N., L. Wang, W. Chen, et al., 2018: Diversity of the Pacific–Japan pattern among CMIP5 models: Role of SST anomalies and atmospheric mean flow. J. Climate, 31, 6857–6877. doi: 10.1175/JCLI-D-17-0541.1
[27] Griffies, S. M., M. J. Harrison, R. C. Pacanowski, et al., 2004: A Technical Guide to MOM4. GFDL Ocean Group Technical Report No. 5, NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, NJ, 339 pp.
[28] Guilyardi, E., 2006: El Niño-mean state-seasonal cycle interactions in a multi-model ensemble. Climate Dyn., 26, 329–348. doi: 10.1007/s00382-005-0084-6
[29] Guilyardi, E., A. Wittenberg, A. Fedorov, et al., 2009: Understanding El Niño in ocean–atmosphere general circulation models: Progress and challenges. Bull. Amer. Meteor. Soc., 90, 325–340. doi: 10.1175/2008BAMS2387.1
[30] Ham, Y. G., and J. S. Kug, 2012: How well do current climate models simulate two types of El Niño? Climate Dyn., 39, 383–398. doi: 10.1007/s00382-011-1157-3
[31] He, S. P., and H. J. Wang, 2013: Oscillating relationship between the East Asian winter monsoon and ENSO. J. Climate, 26, 9819–9838. doi: 10.1175/JCLI-D-13-00174.1
[32] Hwang, Y.-T., and D. M. W. Frierson, 2013: Link between the double-intertropical convergence zone problem and cloud biases over the Southern Ocean. Proc. Natl. Acad. Sci. USA, 110, 4935–4940. doi: 10.1073/pnas.1213302110
[33] Izumo, T., J. Vialard, M. Lengaigne, et al., 2010: Influence of the state of the Indian Ocean Dipole on the following year’s El Niño. Nat. Geosci., 3, 168–172. doi: 10.1038/ngeo760
[34] Jiang, Z. H., H. Yang, Z. Y. Liu, et al., 2014: Assessing the influence of regional SST modes on the winter temperature in China: The effect of tropical Pacific and Atlantic. J. Climate, 27, 868–879. doi: 10.1175/JCLI-D-12-00847.1
[35] Jin, F.-F., 1997a: An equatorial ocean recharge paradigm for ENSO. Part I: Conceptual model. J. Atmos. Sci., 54, 811–829. doi: 10.1175/1520-0469(1997)054<0811:AEORPF>2.0.CO;2
[36] Jin, F.-F., 1997b: An equatorial ocean recharge paradigm for ENSO. Part II: A stripped-down coupled model. J. Atmos. Sci., 54, 830–847. doi: 10.1175/1520-0469(1997)054<0830:AEORPF>2.0.CO;2
[37] Jin, F.-F., S. T. Kim, and L. Bejarano, 2006: A coupled-stability index for ENSO. Geophys. Res. Lett., 33, L23708. doi: 10.1029/2006GL027221
[38] Kalnay, E., M. Kanamitsu, R. Kistler, et al., 1996: The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 77, 437–472. doi: 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
[39] Kim, J. W., S. W. Yeh, and E. C. Chang, 2014: Combined effect of El Niño–Southern Oscillation and Pacific decadal oscillation on the East Asian winter monsoon. Climate Dyn., 42, 957–971. doi: 10.1007/s00382-013-1730-z
[40] Kim, S.-T., and F.-F. Jin, 2011: An ENSO stability analysis. Part II: Results from the twentieth and twenty-first century simulations of the CMIP3 models. Climate Dyn., 36, 1609–1627. doi: 10.1007/s00382-010-0872-5
[41] Kim, S. T., W. J. Cai, F.-F. Jin, et al., 2014a: ENSO stability in coupled climate models and its association with mean state. Climate Dyn., 42, 3313–3321. doi: 10.1007/s00382-013-1833-6
[42] Kim, S. T., W. J. Cai, F.-F. Jin, et al., 2014b: Response of El Niño sea surface temperature variability to greenhouse warming. Nat. Climate Change, 4, 786–790. doi: 10.1038/nclimate2326
[43] Kirtman, B. P., and P. S. Schopf, 1998: Decadal variability in ENSO predictability and prediction. J. Climate, 11, 2804–2822. doi: 10.1175/1520-0442(1998)011<2804:DVIEPA>2.0.CO;2
[44] Kleeman, R., and A. M. Moore, 1997: A theory for the limitation of ENSO predictability due to stochastic atmospheric transients. J. Atmos. Sci., 54, 753–767. doi: 10.1175/1520-0469(1997)054<0753:ATFTLO>2.0.CO;2
[45] Knutson, T. R., S. Manabe, and D. F. Gu, 1997: Simulated ENSO in a global coupled ocean–atmosphere model: Multidecadal amplitude modulation and CO2 sensitivity. J. Climate, 10, 138–161. doi: 10.1175/1520-0442(1997)010<0138:SEIAGC>2.0.CO;2
[46] Kug, J. S., and Y. G. Ham, 2011: Are there two types of La Nina? Geophys. Res. Lett., 38, L16704. doi: 10.1029/2011GL048237
[47] Kug, J. S., F. F. Jin, and S. I. An, 2009: Two types of El Niño events: Cold tongue El Niño and warm pool El Niño. J. Climate, 22, 1499–1515. doi: 10.1175/2008JCLI2624.1
[48] Kug, J. S., Y. G. Ham, J. Y. Lee, et al., 2012: Improved simulation of two types of El Niño in CMIP5 models. Environ. Res. Lett., 7, 039502. doi: 10.1088/1748-9326/7/3/039502
[49] Li, C. F., A. A. Scaife, R. Y. Lu, et al., 2016: Skillful seasonal prediction of Yangtze River valley summer rainfall. Environ. Res. Lett., 11, 094002. doi: 10.1088/1748-9326/11/9/094002
[50] Li, C. Y., 1990: Interaction between anomalous winter monsoon in East Asia and El Niño events. Adv. Atmos. Sci., 7, 36–46. doi: 10.1007/BF02919166
[51] Li, C. Y., 1996: A further study on interaction between anomalous winter monsoon in East Asia and El Nino. J. Meteor. Res., 10, 309–320.
[52] Li, G. and S.-P. Xie, 2014: Tropical biases in CMIP5 multimodel ensemble: The excessive equatorial pacific cold tongue and double ITCZ problems. J. Climate, 27, 1765–1780. doi: 10.1175/JCLI-D-13-00337.1
[53] Li, S. L., and G. T. Bates, 2007: Influence of the Atlantic multidecadal oscillation on the winter climate of East China. Adv. Atmos. Sci., 24, 126–135. doi: 10.1007/s00376-007-0126-6
[54] Li, T., B. Wang, B. Wu, et al., 2017: Theories on formation of an anomalous anticyclone in western North Pacific during El Niño: A review. J. Meteor. Res., 31, 987–1006. doi: 10.1007/s13351-017-7147-6
[55] Li, T. M., 1997: Phase transition of the El Niño–Southern Oscillation: A stationary SST mode. J. Atmos. Sci., 54, 2872–2887. doi: 10.1175/1520-0469(1997)054<2872:PTOTEN>2.0.CO;2
[56] Li, Y. Q., and S. Yang, 2010: A dynamical index for the East Asian winter monsoon. J. Climate, 23, 4255–4262. doi: 10.1175/2010JCLI3375.1
[57] Lin, J.-L., 2007: The double-ITCZ problem in IPCC AR4 coupled GCMs: Ocean–atmosphere feedback analysis. J. Climate, 20, 4497–4525. doi: 10.1175/JCLI4272.1
[58] Liu, G., L.-R. Ji, S.-Q. Sun, et al., 2012: Low- and mid-high latitude components of the East Asian winter monsoon and their reflecting variations in winter climate over eastern China. Atmos. Ocean. Sci. Lett., 5, 195–200. doi: 10.1080/16742834.2012.11446985
[59] Liu, Y., H.-L. Ren, A. A. Scaife, et al., 2018: Evaluation and statistical downscaling of East Asian summer monsoon forecasting in BCC and MOHC seasonal prediction systems. Quart. J. Roy. Meteor. Soc., doi: 10.1002/qj.3405.
[60] Lloyd, J., E. Guilyardi, H. Weller, et al., 2009: The role of atmosphere feedbacks during ENSO in the CMIP3 models. Atmos. Sci. Lett., 10, 170–176. doi: 10.1002/asl.227
[61] Lloyd, J., E. Guilyardi, and H. Weller, 2011: The role of atmosphere feedbacks during ENSO in the CMIP3 models. Part II: Using AMIP runs to understand the heat flux feedback mechanisms. Climate Dyn., 37, 1271–1292. doi: 10.1007/s00382-010-0895-y
[62] Lloyd, J., E. Guilyardi, and H. Weller, 2012: The role of atmosphere feedbacks during ENSO in the CMIP3 models. Part III: The shortwave flux feedback. J. Climate, 25, 4275–4293. doi: 10.1175/JCLI-D-11-00178.1
[63] Lu, B., and H.-L. Ren, 2016: Improving ENSO periodicity simulation by adjusting cumulus entrainment in BCC_CSMs. Dyn. Atmos. Oceans, 76, 127–140. doi: 10.1016/j.dynatmoce.2016.10.005
[64] Lu, B., A. A. Scaife, N. Dunstone, et al., 2017: Skillful seasonal predictions of winter precipitation over southern China. Environ. Res. Lett., 12, 074021. doi: 10.1088/1748-9326/aa739a
[65] Lu, B., F.-F. Jin, and H.-L. Ren, 2018: A coupled dynamic index for ENSO periodicity. J. Climate, 31, 2361–2376. doi: 10.1175/JCLI-D-17-0466.1
[66] Luo, J.-J., R. C. Zhang, S. K. Behera, et al., 2010: Interaction between El Niño and extreme Indian Ocean dipole. J. Climate, 23, 726–742. doi: 10.1175/2009JCLI3104.1
[67] Ma, T. J., W. Chen, D. Nath, et al., 2018: East Asian winter monsoon impacts the ENSO-related teleconnections and North American seasonal air temperature prediction. Sci. Rep., 8, 6547. doi: 10.1038/s41598-018-24552-3
[68] Misra, V., L. Marx, M. Brunke, et al., 2008: The equatorial Pacific cold tongue bias in a coupled climate model. J. Climate, 21, 5852–5869. doi: 10.1175/2008JCLI2205.1
[69] Morice, C. P., J. J. Kennedy, N. A. Rayner, et al., 2012: Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: The HadCRUT4 data set. J. Geophys. Res. Atmos., 117, D08101. doi: 10.1029/2011JD017187
[70] Murray, R. J., 1996: Explicit generation of orthogonal grids for ocean models. J. Comput. Phys., 126, 251–273. doi: 10.1006/jcph.1996.0136
[71] Neelin, J. D., 1991: The slow sea surface temperature mode and the fast-wave limit: Analytic theory for tropical interannual oscillations and experiments in a hybrid coupled model. J. Atmos. Sci., 48, 584–606. doi: 10.1175/1520-0469(1991)048<0584:TSSSTM>2.0.CO;2
[72] Philander, S. G. H., D. Gu, G. Lambert, et al., 1996: Why the ITCZ is mostly north of the equator. J. Climate, 9, 2958–2972. doi: 10.1175/1520-0442(1996)009<2958:WTIIMN>2.0.CO;2
[73] Rayner, N. A., P. Brohan, D. E. Parker, et al., 2006: Improved analyses of changes and uncertainties in sea surface temperature measured in situ since the mid-nineteenth century: The HadSST2 dataset. J. Climate, 19, 446–469. doi: 10.1175/JCLI3637.1
[74] Rong, X. Y., J. Li, H. M. Chen, et al., 2018: The CAMS climate system model and a basic evaluation of its climatology and climate variability simulation. J. Meteor. Res., 32, 839–861. doi: 10.1007/s13351-018-8058-x
[75] Shi, N., 1996: Features of the East Asian winter monsoon intensity on multiple time scale in recent 40 years and their relation to climate. Quart. J. Appl. Meteor., 7, 175–182. (in Chinese)
[76] Stuecker, M. F., F.-F. Jin, A. Timmermann, et al, 2015: Combination mode dynamics of the anomalous northwest Pacific anticyclone. J. Climate, 28, 1093–1111. doi: 10.1175/JCLI-D-14-00225.1
[77] Suarez, M. J., and P. S. Schopf, 1988: A delayed action oscillator for ENSO. J. Atmos. Sci., 45, 3283–3287. doi: 10.1175/1520-0469(1988)045<3283:ADAOFE>2.0.CO;2
[78] Sun, D. Z., Y. Q. Yu, and T. Zhang, 2009: Tropical water vapor and cloud feedbacks in climate models: A further assessment using coupled simulations. J. Climate, 22, 1287–1304. doi: 10.1175/2008JCLI2267.1
[79] Timmermann, A., J. Oberhuber, A. Bacher, et al., 1999: Increased El Niño frequency in a climate model forced by future greenhouse warming. Nature, 398, 694–697. doi: 10.1038/19505
[80] Tokinaga, H., and S.-P. Xie, 2011: Wave- and anemometer-based sea surface wind (WASWind) for climate change analysis. J. Climate, 24, 267–285. doi: 10.1175/2010JCLI3789.1
[81] van Oldenborgh, G. J., S. Y. Philip, and M. Collins, 2005: El Niño in a changing climate: A multi-model study. Ocean Sci., 1, 81–95. doi: 10.5194/os-1-81-2005
[82] Vannière, B., E. Guilyardi, G. Madec, et al., 2013: Using seasonal hindcasts to understand the origin of the equatorial cold tongue bias in CGCMs and its impact on ENSO. Climate Dyn., 40, 963–981. doi: 10.1007/s00382-012-1429-6
[83] Vimont, D. J., D. S. Battisti, and A. C. Hirst, 2001: Footprinting: A seasonal connection between the tropics and mid-latitudes. Geophys. Res. Lett., 28, 3923–3926. doi: 10.1029/2001GL013435
[84] Wang, B., R. G. Wu, and X. H. Fu, 2000: Pacific–East Asian teleconnection: How does ENSO affect East Asian climate? J. Climate, 13, 1517–1536. doi: 10.1175/1520-0442(2000)013<1517:PEATHD>2.0.CO;2
[85] Wang, C. Z., W. Q. Wang, D. X. Wang, et al., 2006: Interannual variability of the South China Sea associated with El Niño. J. Geophys. Res. Oceans, 111, C03023. doi: 10.1029/2005JC003333
[86] Wang, L., and M.-M. Lu, 2016: The East Asian winter monsoon. The Global Monsoon System: Research and Forecast, 3rd Ed. C. P. Chang, H. C. Kuo, N. C. Lau, et al., Eds., World Scientific, Singapore, 51–61, doi: 10.1142/9789813200913_0005.
[87] Wang, L., W. Chen, and R. H. Huang, 2008: Interdecadal modulation of PDO on the impact of ENSO on the East Asian winter monsoon. Geophys. Res. Lett., 35, L20702. doi: 10.1029/2008GL035287
[88] Watanabe, M., M. Chikira, Y. Imada, et al., 2011: Convective control of ENSO simulated in MIROC. J. Climate, 24, 543–562. doi: 10.1175/2010JCLI3878.1
[89] Weng, H., K. Ashok, S. K. Behera, et al., 2007: Impacts of recent El Niño Modoki on dry/wet conditions in the Pacific rim during boreal summer. Climate Dyn., 29, 113–129. doi: 10.1007/s00382-007-0234-0
[90] Weng, H., S. K. Behera, and T. Yamagata, 2009: Anomalous winter climate conditions in the Pacific rim during recent El Niño Modoki and El Niño events. Climate Dyn., 32, 663–674. doi: 10.1007/s00382-008-0394-6
[91] Wu, B. Y., R. Zhang, and R. D’Arrigo, 2006: Distinct modes of the East Asian winter monsoon. Mon. Wea. Rev., 134, 2165–2179. doi: 10.1175/MWR3150.1
[92] Wyrtki, K., 1985: Water displacements in the Pacific and the genesis of El Niño cycles. J. Geophys. Res. Oceans, 90, 7129–7132. doi: 10.1029/JC090iC04p07129
[93] Xie, P. P., and P. A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78, 2539–2558. doi: 10.1175/1520-0477(1997)078<2539:GPAYMA>2.0.CO;2
[94] Xie, S.-P., K. M. Hu, J. Hafner, et al., 2009: Indian Ocean capacitor effect on Indo-western Pacific climate during the summer following El Niño. J. Climate, 22, 730–747. doi: 10.1175/2008JCLI2544.1
[95] Xie, S.-P., Y. Kosaka, Y. Du, et al., 2016: Indo-western Pacific Ocean capacitor and coherent climate anomalies in post-ENSO summer: A review. Adv. Atmos. Sci., 33, 411–432. doi: 10.1007/s00376-015-5192-6
[96] Yu, J.-Y., H.-Y. Kao, and T. Lee, 2010: Subtropics-related interannual sea surface temperature variability in the central equatorial Pacific. J. Climate, 23, 2869–2884. doi: 10.1175/2010JCLI3171.1
[97] Zebiak, S. E., and M. A. Cane, 1987: A model El Niño–Southern Oscillation. Mon. Wea. Rev., 115, 2262–2278. doi: 10.1175/1520-0493(1987)115<2262:AMENO>2.0.CO;2
[98] Zhang, R., A. Sumi, and M. Kimoto, 1996: Impact of El Niño on the East Asian monsoon: A diagnostic study of the ’86/87 and ’91/92 events. J. Meteor. Soc. Japan, 74, 49–62. doi: 10.2151/jmsj1965.74.1_49
[99] Zhang, W. J., F.-F. Jin, M. F. Stuecker, et al., 2016: Unraveling El Niño’s impact on the East Asian monsoon and Yangtze River summer flooding. Geophys. Res. Lett., 43, 11375–11382. doi: 10.1002/2016GL071190
[100] Zheng, W., P. Braconnot, E. Guilyardi, et al., 2008: ENSO at 6ka and 21ka from ocean–atmosphere coupled model simulations. Climate Dyn., 30, 745–762. doi: 10.1007/s00382-007-0320-3