[1] Arakawa, A., 1966: Computational design for long-term numeri-cal integration of the equations of fluid motion: Two-dimensional incompressible flow. Part I. J. Comput. Phys., 1, 119–143. doi: 10.1016/0021-9991(66)90015-5
[2] Arakawa, A., 1972: Design of the UCLA general circulation mo-del. Numerical Simulation of Weather and Climate, Techni-cal Report No. 7, Department of Meteorology, University of California, Los Angeles, USA, 116 pp.
[3] Bannister, R. N., 2017: A review of operational methods of variational and ensemble-variational data assimilation. Quart. J. Roy. Meteor. Soc., 143, 607–633. doi: 10.1002/qj.2982
[4] Bauer, P., A. Thorpe, and G. Brunet, 2015: The quiet revolution of numerical weather prediction. Nature, 525, 47–55. doi: 10.1038/nature14956
[5] Benjamin, S. G., J. M. Brown, G. Brunet, et al., 2019: 100 years of progress in forecasting and NWP applications. Meteor. Monogr., 59, 13.1–13.67, doi: 10.1175/AMSMONOGRAPHS-D-18-0020.1. In A Century of Progress in Atmospheric and Related Sciences: Celebrating the American Meteorological Society Centennial, G. McFarquhar, Ed., American Meteorological Society.
[6] Bermejo, R., and A. Staniforth, 1992: The conversion of semi-Lagrangian advection schemes to quasi-monotone schemes. Mon. Wea. Rev., 120, 2622–2632. doi: 10.1175/1520-0493(1992)120<2622:TCOSLA>2.0.CO;2
[7] Bermejo, R., and J. Conde, 2002: A conservative quasi-monotone semi-Lagrangian scheme. Mon. Wea. Rev., 130, 423–430. doi: 10.1175/1520-0493(2002)130<0423:ACQMSL>2.0.CO;2
[8] Blumen, W., and W. M. Washington, 1973: Atmospheric dynamics and numerical weather prediction in the People’s Republic of China 1949–1966. Bull. Amer. Meteor. Soc., 54, 502–518. doi: 10.1175/1520-0477(1973)054<0502:ADANWP>2.0.CO;2
[9] Bonavita, M., Y. Trémolet, E. Holm, et al., 2017: A Strategy for Data Assimilation. Technical Memorandum No. 800, Euro-pean Centre for Medium Range Weather Forecasts, Reading, UK, 44 pp.
[10] Chao, J. P., and X. P. Zhou, 1964: Cumulus Dynamics. Science Press, Beijing, 116 pp. (in Chinese)
[11] Chen, C. G., X. L. Li, X. S. Shen, et al., 2014: Global shallow water models based on multi-moment constrained finite volume method and three quasi-uniform spherical grids. J. Comput. Phys., 271, 191–223. doi: 10.1016/j.jcp.2013.10.026
[12] Chen, C.-S., L.-R. Ji, J.-B. Chen, et al., 2007: An application of JFNK method to solving the 1D nonlinear advection equation in fully implicit scheme. Chinese J. Atmos. Sci., 31, 963–972. doi: 10.3878/j.issn.1006-9895.2007.05.19
[13] Chen, D. H., and J. S. Xue, 2004: An overview on recent progress of the operational numerical weather prediction models. Acta Meteor. Sinica, 62, 623–633. (in Chinese) doi: 10.11676/qxxb2004.061
[14] Chen, X. S., R. Z. Liu, Y. F. Xu, et al., 1957: A test of two-parameter model for a situation with a strong front. Acta Meteor. Sinica, 28, 275–281. doi: 10.11676/qxxb1957.023
[15] Chou, J. F., 1974: A problem of using past data in numerical weather forecasting. Scientia Sinica, 17, 635–644. (in Chinese)
[16] Côté, J., S. Gravel, A. Méthot, et al., 1998: The operational CMC-MRB Global Environmental Multiscale (GEM) model. Part I: Design considerations and formulation. Mon. Wea. Rev., 126, 1373–1395. doi: 10.1175/1520-0493(1998)126<1373:TOCMGE>2.0.CO;2
[17] Di, D., J. Li, W. Han, et al., 2018: Enhancing the fast radiative transfer model for FengYun-4 GIIRS by using local training profiles. J. Geophys. Res. Atmos., 123, 12,583–12,596. doi: 10.1029/2018JD029089
[18] Diamantakis, M., and J. Flemming, 2014: Global mass fixer algorithms for conservative tracer transport in the ECMWF model. Geosci. Model Dev., 7, 965–979. doi: 10.5194/gmd-7-965-2014
[19] Eyre, J., 2007: Progress achieved on assimilation of satellite data in NWP over the last 30 years. Annual Seminar on Recent Developments in the Use of Satellite Observations in Numerical Weather Prediction, ECMWF, UK. Available at https://www.ecmwf.int/en/learning/workshops-and-seminars/past-workshops/2007-annual-seminar. Accessed on 24 July 2020.
[20] Gospodinov, I. G., V. G. Spiridonov, and J.-F. Geleyn, 2001: Second-order accuracy of two-time-level semi-Lagrangian schemes. Quart. J. Roy. Meteor. Soc., 127, 1017–1033. doi: 10.1002/qj.49712757317
[21] Gu, Z.-C., 1958a: On the equivalency of formulations of weather forecasting as an initial value problem and as an “evolution” problem. Acta Meteor. Sinica, 29, 93–98. (in Chinese) doi: 10.11676/qxxb1958.011
[22] Gu, Z.-C., 1958b: On the utilization of past data in numerical weather forecasting. Acta Meteor. Sinica, 29, 176–184. (in Chinese) doi: 10.11676/qxxb1958.019
[23] Gu, Z.-C., 1959: Achievement of numerical prediction in China. Acta Meteor. Sinica, 30, 237–242. (in Chinese) doi: 10.11676/qxxb1959.033
[24] Gu, Z.-C., J. P. Chao, and C. Jü, 1957: A test for 24 and 48-h numerical forecasting with a quasi-geostophic two-parameter model. Acta Meteor. Sinica, 28, 41–62. (in Chinese) doi: 10.11676/qxxb1957.004
[25] Guo, X. R., Y. L. Zhang, Z. H. Yan, et al., 1995: The limited area analysis and forecast system and its operational application. Acta Meteor. Sinica, 53, 306–318. (in Chinese) doi: 10.11676/qxxb1995.036
[26] Gustafsson, N., T. Janjić, C. Schraff, et al., 2018: Survey of data assimilation methods for convective-scale numerical weather prediction at operational centres. Quart. J. Roy. Meteor. Soc., 144, 1218–1256. doi: 10.1002/qj.3179
[27] Han, W., 2014: Constrained variational bias correction for satellite radiance assimilation. Proc. 19th International TOVS Study Conference, Jeju Island, South Korea. Available at https://cimss.ssec.wisc.edu/itwg/itsc/itsc19/index.html. Accessed on 24 July 2020.
[28] Han, W., and N. Bormann, 2016: Constrained Adaptive Bias Correction for Satellite Radiance Assimilation in the ECMWF 4D-Var System. ECMWF Technical Memorandum, 783, European Centre for Medium Range Weather Forecasts, Reading, UK, 28 pp.
[29] Han, W., J. S. Xue, J. M. Xu, et al., 2006: Assimilation of FY2C AMV in GRAPES. Proc. Eighth International Winds Workshop, Beijing, China. Available at https://www.eumetsat.int/website/wcm/idc/idcplg?IdcService=GET_FILE&dDocName=PDF_CONF_P47_S2_04_HAN_V&RevisionSelectionMethod=LatestReleased&Ren. Accessed on 29 July 2020.
[30] Han, W., X. S. Shen, Z. R. Zhuang, et al., 2010: The use of satellite data in Chinese new GFS. ITSC-XVII Conference, Monterey, CA, USA. Available at https://cimss.ssec.wisc.edu/itwg/itsc/itsc17/. Accessed on 24 July 2020.
[31] Hu, Z. J., and G. Y. Zou, 1992: Atmospheric non-hydrostatic mo-del and elastic adaptation. Sci. China, 35, 463–475. (in Chinese)
[32] Huang, L. P., D. H. Chen, L. T. Deng, et al., 2017: Main technical improvements of GRAPES_Meso V4.0 and verification. J. Appl. Meteor. Sci., 28, 25–37. (in Chinese)
[33] Huang, W., J.-W. Bao, X. Zhang, et al., 2018: Comparison of the vertical distributions of cloud properties from idealized extratropical deep convection simulations using various horizontal resolutions. Mon. Wea. Rev., 146, 833–851. doi: 10.1175/MWR-D-17-0162.1
[34] Ji, L. R., 2011: Some highlights and their implication in the early progress of numerical weather prediction—a review. Adv. Meteor. Sci. Technol., 1, 40–43. (in Chinese)
[35] Ji, L.-R., J.-B. Chen, D.-M. Zhang, et al., 2005: Review of some numerical aspects of the dynamic framework of NWP model. Chinese J. Atmos. Sci., 29, 120–130. (in Chinese) doi: 10.3878/j.issn.1006-9895.2005.01.14
[36] Ji, Z. Z., 1981: A case of nonlinear instability in Arakawa scheme. Acta Meteor. Sinica, 39, 237–239. (in Chinese) doi: 10.11676/qxxb1981.025
[37] Ji, Z. Z., and Q. C. Zeng, 1982: The construction and application of difference schemes of evolution equations. Scientia Atmos. Sinica, 6, 88–94. (in Chinese) doi: 10.3878/j.issn.1006-9895.1982.01.13
[38] Ji, Z. Z., and B. Wang, 1991: Further discussion on the construction and application of difference scheme of evolution equations. Scientia Atmos. Sinica, 15, 1–10. (in Chinese) doi: 10.3878/j.issn.1006-9895.1991.02.01
[39] Kalnay, E., 2002: Atmospheric Modeling, Data Assimilation and Predictability. Cambridge University Press, Cambridge, UK, 341 pp, doi: 10.1017/CBO9780511802270.
[40] Kwon, I.-H., S. English, W. Bell, et al., 2018: Assessment of progress and status of data assimilation in numerical weather prediction. Bull. Amer. Meteor. Soc., 99, ES75–ES79. doi: 10.1175/BAMS-D-17-0266.1
[41] Lauritzen, P. H., R. D. Nair, and P. A. Ullrich, 2010: A conservative semi-Lagrangian multi-tracer transport scheme (CSLAM) on the cubed-sphere grid. J. Comput. Phys., 229, 1401–1424. doi: 10.1016/j.jcp.2009.10.036
[42] Li, J., and X. L. Zou, 2014: Impact of FY-3A MWTS radiances on prediction in GRAPES with comparison of two quality control schemes. Front. Earth Sci., 8, 251–263. doi: 10.1007/s11707-014-0405-3
[43] Li, J., and G. Q. Liu, 2016: Direct assimilation of Chinese FY-3C microwave temperature sounder-2 radiances in the global GRAPES system. Atmos. Meas. Tech., 9, 3095–3113. doi: 10.5194/amt-9-3095-2016
[44] Li, X. L., and Y. Z. Liu, 2019: The improvement of GRAPES global extratropical singular vectors and experimental study. Acta Meteor. Sinica, 77, 552–562. (in Chinese) doi: 10.11676/qxxb2019.020
[45] Li, X. L., C. G. Chen, X. S. Shen, et al., 2013: A multimoment constrained finite-volume model for nonhydrostatic atmospheric dynamics. Mon. Wea. Rev., 141, 1216–1240. doi: 10.1175/MWR-D-12-00144.1
[46] Li, X. L., J. Chen, Y. Z. Liu, et al., 2019: Representations of initial uncertainty and model uncertainty of GRAPES global ensemble forecasting. Trans. Atmos. Sci., 42, 348–359. (in Chinese) doi: 10.13878/j.cnki.dqkxxb.20190318001
[47] Li, Z. C., 2010: Review of history of NWP operation. Interview by China Meteorological News. Available online at http://2011.cma.gov.cn/ztbd/2010zt/2010030501/2010030502/201003/t20100317_62254.html. Accessed on 24 July 2020. (in Chinese)
[48] Liao, T.-H., 1956: A simplified graphical method for numerical prediction with a two-parameter model of the atmosphere. Acta Meteor. Sinica, 27, 153–166. (in Chinese) doi: 10.11676/qxxb1956.013
[49] Liu, Y., and J. S. Xue, 2014: Assimilation of global navigation satellite radio occultation observations in GRAPES: Operational implementation. J. Meteor. Res., 28, 1061–1074. doi: 10.1007/s13351-014-4028-0
[50] Liu, Y. Z., X. S. Shen, and X. L. Li, 2013: Research on the singular vector perturbation of the GRAPES global model based on the total energy norm. Acta Meteor. Sinica, 71, 517–526. (in Chinese) doi: 10.11676/qxxb2013.043
[51] Liu, Y. Z., L. Zhang, and Z. H. Lian, 2018: Conjugate gradient algorithm in the four-dimensional variational data assimilation system in GRAPES. J. Meteor. Res., 32, 974–984. doi: 10.1007/s13351-018-8053-2
[52] Ma, Z. S., Q. J. Liu, C. F. Zhao, et al., 2018: Application and evaluation of an explicit prognostic cloud-cover scheme in GRAPES global forecast system. J. Adv. Model. Earth Syst., 10, 652–667. doi: 10.1002/2017MS001234
[53] Magnusson, L., and E. Kallen, 2013: Factors influencing skill improvements in the ECMWF forecasting system. Mon. Wea. Rev., 141, 3142–3152. doi: 10.1175/MWR-D-12-00318.1
[54] Mengaldo, G., A. Wyszogrodzki, M. Diamantakis, et al., 2019: Current and emerging time-integration strategies in global numerical weather and climate prediction. Arch. Comput. Methods Eng., 26, 663–684. doi: 10.1007/s11831-018-9261-8
[55] Mesinger, F., 1984: A blocking technique for representation of mountains in atmospheric models. Riv. Meteor. Aeronautica, 44, 195–202.
[56] Mu, M., W. S. Duan, and B. Wang, 2003: Conditional nonlinear optimal perturbation and its applications. Nonlinear Process. Geophys., 10, 493–501. doi: 10.5194/npg-10-493-2003
[57] Mu, M., W. Duan, Q. Wang, et al., 2010: An extension of conditional nonlinear optimal perturbation approach and its applications. Nonlinear Process. Geophys., 17, 211–220. doi: 10.5194/npg-17-211-2010
[58] Numerical Prediction Team of the Central Meteorological Bureau of China, 1965: Operational tests of numerical prediction in China. Chinese Sci. Bull., 16, 131–133. (in Chinese) doi: 10.1360/csb1965-10-2-131
[59] Numerical Prediction Research Team, 1975: Progress in atmospheric general circulation numerical experiment in recent years. Advances in Modern Meteorology, Institute of Atmospheric Physics, Chinese Academy of Sciences, Ed., Science Press, Beijing, 1–45.
[60] Peng, F., X. L. Li, J. Chen, et al., 2019: A stochastic kinetic energy backscatter scheme for model perturbations in the GRAPES global ensemble prediction system. Acta Meteor. Sinica, 77, 180–195. (in Chinese) doi: 10.11676/qxxb2019.009
[61] Rabier, F., H. Järvinen, E. Klinker, et al., 2000: The ECMWF operational implementation of four-dimensional variational assimilation. I: Experimental results with simplified physics. Quart. J. Roy. Meteor. Soc., 126, 1143–1170. doi: 10.1002/qj.49712656415
[62] Ritchie, H., and M. Tanguay, 1996: A comparison of spatially averaged Eulerian and semi-Lagrangian treatments of mountains. Mon. Wea. Rev., 124, 167–181. doi: 10.1175/1520-0493(1996)124<0167:ACOSAE>2.0.CO;2
[63] Robert, A., 1969: The integration of a spectral model of the atmosphere by the implicit method. Proc. WMO/IUGG International Symposium on NWP, Japan Meteorological Society, 26 November–4 December 1968, Tokyo, Japan.
[64] Robert, A., T. Yee, and H. Ritchie, 1985: A semi-Lagrangian and semi-implicit numerical integration scheme for multilevel atmospheric models. Mon. Wea. Rev., 113, 388–394. doi: 10.1175/1520-0493(1985)113<0388:ASLASI>2.0.CO;2
[65] Shen, R. G., and W. F. Mu, 1965: Preliminary experience in utilizing the 48-h 500 hPa NWP forecast graph in Central Meteorological Bureau. Acta Meteor. Sinica, 37, 383–398. (in Chinese) doi: 10.11676/qxxb1965.045
[66] Shen, X. S., and J. J. Wang, 2015: Technical Report of GRAPES_GFS. Numerical Weather Prediction Center of CMA, 232 pp. (in Chinese)
[67] Shen, X. S., W. Han, J. Sun, et al., 2009: Technical Report on Quasi-Operation of the GRAPES_GFS Global Numerical Prediction System. Numerical Models Innovation Base of the China Meteorological Administration. 150 pp. (in Chinese)
[68] Shen, X. S., J. S. Xue, L. R. Ji, et al., 2010: Numerical prediction research. Report on Advances in Atmospheric Sciences, China Science and Technology Press, Beijing, China, 149–160.
[69] Shen, X. S., M. H. Wang, and F. Xiao, 2011: A study of the high order accuracy and positive definite conformal advection scheme in the GRAPES model I: Scientific design and idealized tests. Acta Meteor. Sinica, 69, 1–15. (in Chinese) doi: 10.11676/qxxb2011.001
[70] Shen, X. S., X. J. Zhou, J. S. Xue, et al., 2013: GRAPES Numeri-cal Prediction System for Heavy Rainfall. China Meteorological Press, Beijing, 186 pp. (in Chinese)
[71] Shen, X. S., Y. Su, J. L. Hu, et al., 2017: Development and operation transformation of GRAPES global midium-range forecast. J. Appl. Meteor. Sci., 28, 1–10. (in Chinese)
[72] Simmons, A. J., and J. B. Chen, 1991: The calculation of geopotential and the pressure gradient in the ECMWF atmospheric model: Influence on the simulation of the polar atmosphere and on temperature analyses. Quart. J. Roy. Meteor. Soc., 117, 29–58. doi: 10.1002/qj.49711749703
[73] Simmons, A. J., and C. Temperton, 1997: Stability of a two-time-level semi-implicit integration scheme for gravity wave motion. Mon. Wea. Rev., 125, 600–615. doi: 10.1175/1520-0493(1997)125<0600:SOATTL>2.0.CO;2
[74] Smolarkiewicz, P. K., J. Szmelter, and F. Xiao, 2016: Simulation of all-scale atmospheric dynamics on unstructured meshes. J. Comput. Phys., 322, 267–287. doi: 10.1016/j.jcp.2016.06.048
[75] Su, C. X., 1958: The turbulence in the surface layer of the stratified atmosphere. Acta Meteor. Sinica, 29, 73–82. (in Chinese) doi: 10.11676/qxxb1958.009
[76] Su, C. X., 1959: On the summary of basic laws in near surface turbulent transfer. Acta Meteor. Sinica, 30, 114–118. (in Chinese) doi: 10.11676/qxxb1959.015
[77] Su, Y., X. S. Shen, X. D. Peng, et al., 2013: Application of PRM scalar advection scheme in GRAPES global forecast system. Chinese J. Atmos. Sci., 37, 1309–1325. (in Chinese) doi: 10.3878/j.issn.1006-9895.2013.12164
[78] Su, Y., X. S. Shen, Z. T. Chen, et al., 2018: A study on the three-dimensional reference atmosphere in GRAPES_GFS I: Theoretical design and ideal test. Acta Meteor. Sinica, 76, 241–254. (in Chinese) doi: 10.11676/qxxb2017.097
[79] Tao, S. Y., S. X. Zhao, X. P. Zhou, et al., 2003: The research progress of the synoptic meteorology and synoptic forecast. Chinese J. Atmos. Sci., 27, 451–467. (in Chinese) doi: 10.3878/j.issn.1006-9895.2003.04.03
[80] Temperton, C., M. Hortal, and A. Simmons, 2001: A two-time-level semi-Lagrangian global spectral model. Quart. J. Roy. Meteor. Soc., 127, 111–127. doi: 10.1002/qj.49712757107
[81] Tian, X. J., H. Q. Zhang, X. B. Feng, et al., 2018: Nonlinear least squares En4DVar to 4DEnVar methods for data assimilation: Formulation, analysis, and preliminary evaluation. Mon. Wea. Rev., 146, 77–93. doi: 10.1175/MWR-D-17-0050.1
[82] Tiedtke, M., 1993: Representation of clouds in large-scale models. Mon. Wea. Rev., 121, 3040–3061. doi: 10.1175/1520-0493(1993)121<3040:ROCILS>2.0.CO;2
[83] Tu, W. M., and Y. T. Zhang, 1995: The global optimum interpolation objective analysis. Acta Meteor. Sinica, 53, 148–156. (in Chinese) doi: 10.11676/qxxb1995.017
[84] Wan, X. M., W. H. Tian, W. Han, et al., 2017: The evaluation of FY-2E reprocessed IR AMVs in GRAPES. Meteor. Mon., 43, 1–10. (in Chinese) doi: 10.7519/j.issn.1000-0526.2017.01.001
[85] Wan, X. M., W. Han, W. H. Tian, et al., 2018: The application of intensive FY-2G AMVs in GRAPES_RAFS. Plateau Meteor., 37, 1083–1093. (in Chinese)
[86] Wang, B., and Z. Z. Ji, 1990: The construction and preliminary test of the explicit complete square conservative difference schemes. Chinese Sci. Bull., 35, 1724–1728. (in Chinese)
[87] Wang, B., H. Wan, Z. Z. Ji, et al., 2004: Design of a new dynami-cal core for global atmospheric models based on some efficient numerical methods. Sci. China Ser. A Math., 47, 4–21.
[88] Wang, B., J. J. Liu, S. D. Wang, et al., 2010: An economical approach to four-dimensional variational data assimilation. Adv. Atmos. Sci., 27, 715–727. doi: 10.1007/s00376-009-9122-3
[89] Wang, D. H., and X. P. Zhou, 1996: Damping and compressing techniques of sound waves in nonhydrostatic atmospheric numerical model. J. Trop. Meteor., 12, 265–271. (in Chinese)
[90] Wang, H., 2017: Assimilation and application of geostationary satellite emissivity data in GRAPES global prediction system. Master dissertation, Chengdu University of Information Engineering, Chengdu, 57 pp. (in Chinese)
[91] Wang, J. C., J. D. Gong, and R. C. Wang, 2016: Estimation of background error for brightness temperature in GRAPES 3DVar and its application in radiance data background quality control. Acta Meteor. Sinica, 74, 397–406. (in Chinese) doi: 10.11676/qxxb2016.026
[92] Wang, J. Z., J. Chen, J. Du, et al., 2018: Sensitivity of ensemble forecast verification to model bias. Mon. Wea. Rev., 146, 781–796. doi: 10.1175/MWR-D-17-0223.1
[93] Wang, R. C., Z. Zhuang, Z. Xu, et al., 2018: Development of Km-Scale 3DVAR for GRAPES-Meso. Technical documentation for the 4th Scientific Steering Committee Meeting, Numeri-cal Weather Prediction Center of CMA, 21 pp.
[94] Wu, Y., Z. F. Xu, R. C. Wang, et al., 2018: Improvement of GRAPES_3Dvar with a new multi-scale filtering and its application in heavy rain forecasting. Meteor. Mon., 44, 621–633. (in Chinese) doi: 10.7519/j.issn.1000-0526.2018.05.003
[95] Xu, E. H., 1959: Research on dynamical meteorology in China during the last 10 years. Acta Meteor. Sinica, 30, 243–250. (in Chinese) doi: 10.11676/qxxb1959.034
[96] Xu, K.-M., and D. A. Randall, 1996: A semiempirical cloudiness parameterization for use in climate models. J. Atmos. Sci., 53, 3084–3102. doi: 10.1175/1520-0469(1996)053<3084:ASCPFU>2.0.CO;2
[97] Xu, Z. Z., J. Chen, Y. Wang, et al., 2019: Sensitivity experiments of a stochastically perturbed parameterizations (SPP) scheme for mesoscale precipitation ensemble prediction. Acta Meteor. Sinica, 77, 849–868. (in Chinese) doi: 10.11676/qxxb2019.039
[98] Xue, J. S., and D. H. Chen, 2008: Scientific Design and Application of GRAPES Numerical Prediction System. Science Press, Beijing, 383 pp. (in Chinese)
[99] Xue, J. S., K. L. Wang, Z. M. Wang, et al., 1988: Test of a tropi-cal limited area numerical prediction model including effect of real topography. Adv. Atmos. Sci., 5, 1–13. doi: 10.1007/BF02657341
[100] Xue, J. S., C. J. Li, and Z. M. Wang, 1992: Initialization of limited area model based on the principle of nonlinear normal mode initialization. Scientia Atmos. Sinica, 16, 686–697. (in Chinese) doi: 10.3878/j.issn.1006-9895.1992.06.06
[101] Xue, J. S., Y. Liu, L. Zhang, et al., 2012: Analysis of the GRAPES Global 3DVar System at Model Space. Internal Documentation of Numerical Weather Prediction Center of CMA, 105 pp. (in Chinese)
[102] Yan, H., 1987: The design of a nested fine-mesh model over the complex topography. Part one: Basic structure of the numerical model. Plateau Meteor., 6, 1–63. (in Chinese)
[103] Yang, J., Z. Q. Zhang, C. Y. Wei, et al., 2017: Introducing the new generation of Chinese geostationary weather satellites, Feng-yun-4. Bull. Amer. Meteor. Soc., 98, 1637–1658. doi: 10.1175/BAMS-D-16-0065.1
[104] Yang, M. J., J. D. Gong, R. C. Wang, et al., 2019: A comparative study of two blending methods to introduce large scale information into GRAPES mesoscale analysis. J. Trop. Meteor., 25, 227–244.
[105] Ye, D. Z., 1963: Collected Papers of Dynamic Meteorology (2). Science Press, Beijing, 133–152. (in Chinese)
[106] Yin, R. Y., W. Han, Z. Q. Gao, et al., 2019: A study on longwave infrared channel selection based on estimates of background errors and observation errors in the detection area of FY-4A. Acta Meteor. Sinica, 77, 898–910. (in Chinese) doi: 10.11676/qxxb2019.051
[107] Yin, R. Y., W. Han, Z. Q. Gao, et al., 2020: The evaluation of FY4A’s Geostationary Interferometric Infrared Sounder (GIIRS) long-wave temperature sounding channels using the GRAPES global 4D-Var. Quart. J. Roy. Meteor. Soc., 146, 1459–1476. doi: 10.1002/qj.3746
[108] Yu, R. C., J. S. Xue, and Y. P. Xu, 2004: AREM Meso-Scale Numerical Prediction Modeling System for Heavy Rainfall. China Meteorological Press, Beijing, 233 pp. (in Chinese)
[109] Yu, R. C., Q. C. Zeng, G. K. Peng, et al., 1994: Research on “Ya-An-Tian-Lou.” Part II: Numerical trial-forecasting. Scientia Atmos. Sinica, 18, 535–551. (in Chinese) doi: 10.3878/j.issn.1006-9895.1994.05.04
[110] Yuan, Y., X. L. Li, J. Chen, et al., 2016: Stochastic parameterization toward model uncertainty for the GRAPES mesoscale ensemble prediction system. Meteor. Mon., 42, 1161–1175. (in Chinese) doi: 10.7519/j.issn.1000-0526.2016.10.001
[111] Zeng, Q. C., 1963a: Application of a two-layer model of full fluid dynamic and thermo-dynamic equations in the short-term weather prediction. Collected Papers of Dynamic Meteorology (2), Science Press, Beijing, 133–152.
[112] Zeng, Q. C., 1963b: Characteristic parameter and dynamic equations. Acta Meteor. Sinica, 33, 472–483. (in Chinese) doi: 10.11676/qxxb1963.050
[113] Zeng, Q. C., 1963c: The adapting and developing processes in the atmosphere: (1) Physical analysis and linear theory. Acta Meteor. Sinica, 33, 163–174. (in Chinese) doi: 10.11676/qxxb1963.017
[114] Zeng, Q. C., 1978: Some aspects of the computational stability. Scientia Atmos. Sinica, 2, 181–191. (in Chinese) doi: 10.3878/j.issn.1006-9895.1978.03.01
[115] Zeng, Q. C., 1979: Mathematical and Physical Basis of Numerical Weather Prediction (Vol. 1). Science Press, Beijing, 543 pp. (in Chinese)
[116] Zeng, Q. C., 2013: Weather forecast—from empirical to physico-mathematical theory and super-computing system engineering. Physics, 42, 300–314. (in Chinese)
[117] Zeng, Q. C., and Z. Z. Ji, 1981: On the computational stability of evolution equations. Math. Numer. Sinica, 3, 79–86. (in Chinese)
[118] Zeng, Q. C., C. G. Yuan, X. H. Zhang, et al., 1985: A test for the difference scheme of a general circulation model. Acta Meteor. Sinica, 43, 441–449. (in Chinese) doi: 10.11676/qxxb1985.056
[119] Zeng, Q. T., 1961: The application of a complete system of thermo-hydrodynamic equations to short-term weather forecast in a two-level model. Dokl. Akad. Nauk SSSR, 137, 76–78.
[120] Zerroukat, M., N. Wood, and A. Staniforth, 2004: SLICE-S: A semi-Lagrangian inherently conserving and efficient scheme for transport problems on the sphere. Quart. J. Roy. Meteor. Soc., 130, 2649–2664. doi: 10.1256/qj.03.200
[121] Zerroukat, M., N. Wood, A. Staniforth, et al., 2009: An inherently mass-conserving semi-implicit semi-Lagrangian discretisation of the shallow-water equations on the sphere. Quart. J. Roy. Meteor. Soc., 135, 1104–1116. doi: 10.1002/qj.458
[122] Zhang, H., J. S. Xue, G. F. Zhu, et al., 2004: Application of direct assimilation of ATOVS microwave radiances to typhoon track prediction. Adv. Atmos. Sci., 21, 283–290. doi: 10.1007/BF02915715
[123] Zhang, H. B., J. Chen, X. F. Zhi, et al., 2014: Study on the application of GRAPES regional ensemble prediction system. Meteor. Mon., 40, 1076–1087. (in Chinese) doi: 10.7519/j.issn.1000-0526.2014.09.005
[124] Zhang, H. B., J. Chen, X. F. Zhi, et al., 2015: Study on multi-scale blending initial condition perturbations for a regional ensemble prediction system. Adv. Atmos. Sci., 32, 1143–1155. doi: 10.1007/s00376-015-4232-6
[125] Zhang, L., Y. Z. Liu, Y. Liu, et al., 2019: The operational global four-dimensional variational data assimilation system at the China Meteorological Administration. Quart. J. Roy. Meteor. Soc., 145, 1882–1896. doi: 10.1002/qj.3533
[126] Zhang, X., J.-W. Bao, B. D. Chen, et al., 2018: A three-dimensio-nal scale-adaptive turbulent kinetic energy scheme in the WRF-ARW model. Mon. Wea. Rev., 146, 2023–2045. doi: 10.1175/MWR-D-17-0356.1
[127] Zhao, J. Z., 1959: Progress of meteorological research in China in recent 10 years. Acta Meteor. Sinica, 30, 206–211. (in Chinese) doi: 10.11676/qxxb1959.027
[128] Zheng, Q. L., 1980: A seven-level spectral model of primitive equations for the Northern Hemisphere. Proc. Second Meeting on Numerical Weather Prediction of China, Science Press, Beijing, 13–24.
[129] Zheng, Q. L., 1989: Northern Hemispheric seven–level primitive equation spectral model (III) and its application to the me-dium range numerical weather prediction. J. Appl. Meteor. Sci., 4, 1–12. (in Chinese)
[130] Zhong, Q., 1992: A general inverse formulation principle of perfect conservative scheme and its applications. Chinese J. Comput. Phys., 9, 758–764. (in Chinese)
[131] Zhong, Q., 1993: Durative, economic inversion compensation of a truth-preserved computational scheme for evolution equation. Chinese Sci. Bull., 35, 1101–1105. (in Chinese)
[132] Zhou, X. J., 1963: Statistical theory of microphysical mechanism of warm rain precipitation. Acta Meteor. Sinica, 33, 97–107. (in Chinese) doi: 10.11676/qxxb1963.008
[133] Zhu, L. J., J. D. Gong, L. P. Huang, et al., 2017: Three-dimensio-nal cloud initial field created and applied to GRAPES numerical weather prediction nowcasting. J. Appl. Meteor. Sci., 28, 38–51. (in Chinese)
[134] Zhu, Y. T., 1961: A nonlinear prediction by using a three-layer model at spherical coordinate. Acta Meteor. Sinica, 31, 216–233. (in Chinese)
[135] Zhu, Y. T., 1962: Numerical experiment of topography-induced perturbation in the baroclinic atmosphere. Acta Meteor. Sinica, 32, 37–43. (in Chinese) doi: 10.11676/qxxb1962.004
[136] Zhu, Y. T., and H. B. Yin, 1987: A scheme for predicting typhoon track by using five-layer primitive equation model with nesting grids. Proc. Typhoon Meeting in 1985, China Meteorological Press, Beijing, 253–262.
[137] Zhu, Z. S., H. J. Wang, and Y. T. Zhang, 1992: Quasi-operational limited area objective analysis scheme in the National Meteorological Centre. J. Appl. Meteor. Sci., 3, 459–467. (in Chinese)