[1] Berner, J., G. J. Shutts, M. Leutbecher, et al., 2009: A spectral stochastic kinetic energy backscatter scheme and its impact on flow-dependent predictability in the ECMWF ensemble prediction system. J. Atmos. Sci., 66, 603–626. doi: 10.1175/2008JAS2677.1
[2] Betts, A. K., 1986: A new convective adjustment scheme. Part I: Observational and theoretical basis. Quart. J. Roy. Meteor. Soc., 112, 667–691. doi: 10.1002/qj.49711247307
[3] Bishop, C. H., B. J. Etherton, and S. J. Majumdar, 2001: Adaptive sampling with the ensemble transform Kalman filter. Part I: Theoretical aspects. Mon. Wea. Rev., 129, 420–436. doi: 10.1175/1520-0493(2001)129<0420:ASWTET>2.0.CO;2
[4] Buehner, M., 2005: Ensemble-derived stationary and flow-dependent background-error covariances: Evaluation in a quasi-operational NWP setting. Quart. J. Roy. Meteor. Soc., 131, 1013–1043. doi: 10.1256/qj.04.15
[5] Buehner, M., P. L. Houtekamer, C. Charette, et al., 2010a: Intercomparison of variational data assimilation and the ensemble Kalman filter for global deterministic NWP. Part I: Description and single-observation experiments. Mon. Wea. Rev., 138, 1550–1566. doi: 10.1175/2009MWR3157.1
[6] Buehner, M., P. L. Houtekamer, C. Charette, et al., 2010b: Intercomparison of variational data assimilation and the ensemble Kalman filter for global deterministic NWP. Part II: One-month experiments with real observations. Mon. Wea. Rev., 138, 1567–1586. doi: 10.1175/2009MWR3158.1
[7] Buizza, R., and T. N. Palmer, 1995: The singular-vector structure of the atmospheric global circulation. J. Atmos. Sci., 9, 1434–1456. doi: 10.1175/1520-0469(1995)052<1434:TSVSOT>2.0.CO;2
[8] Charron, M., G. Pellerin, L. Spacek, et al., 2009: Toward random sampling of model error in the Canadian ensemble prediction system. Mon. Wea. Rev., 138, 1877–1901. doi: 10.1175/2009MWR3187.1
[9] Chen, J., J. Z. Wang, J. Du, et al., 2019: Forecast bias correction through model integration: A dynamical wholesale approach. Quart. J. Roy. Meteor. Soc., . doi: 10.1002/qj.3730
[10] Chen, L. L., J. Chen, J. S. Xue, et al., 2015: Development and testing of the GRAPES regional ensemble-3DVAR hybrid data assimilation system. J. Meteor. Res., 29, 981–996. doi: 10.1007/s13351-015-5021-y
[11] Cui, B., Z. Toth, Y. J. Zhu, et al., 2006: The trade-off in bias correction between using the latest analysis/modeling system with a short, vs. an older system with a long archive. Proceedings of the First THORPEX International Science Symposium, World Meteorological Organization, Montreal, Canada, 281–284.
[12] Du, J., 2007: Uncertainty and Ensemble Forecast. NOAA/NWS Science and Technology Infusion Lecture Series, Nation Weather Service, 42 pp.
[13] Gneiting, T., A. E. Raftery, A. H. Westveld III, et al., 2005: Calibrated probabilistic forecasting using ensemble model output statistics and minimum CRPS estimation. Mon. Wea. Rev., 133, 1098–1118. doi: 10.1175/MWR2904.1
[14] Hamill, T. M., and C. Snyder, 2000: A hybrid ensemble Kalman filter-3D variational analysis schme. Mon. Wea. Rev., 128, 2905–2919. doi: 10.1175/1520-0493(2000)128<2905:AHEKFV>2.0.CO;2
[15] Hamill, T. M., J. S. Whitaker, M. Fiorino, et al., 2011: Global ensemble predictions of 2009’s tropical cyclones initialized with an ensemble Kalman filter. Mon. Wea. Rev., 139, 668–688. doi: 10.1175/2010MWR3456.1
[16] Hollingsworth, A., 1980: An experiment in Monte Carlo forecasting procedure. Proceedings of ECMWF Workshop on Stochastic Dynamic Forecasting, ECMWF.
[17] Hong, S.-Y., and H.-L. Pan, 1996: Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Mon. Wea. Rev., 124, 2322–2339. doi: 10.1175/1520-0493(1996)124<2322:NBLVDI>2.0.CO;2
[18] Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 2318–2341. doi: 10.1175/MWR3199.1
[19] Kain, J. S., and J. M. Fritsch., 1990: A one-dimensional entraining/detraining plume model and its application in convective parameterization. J. Atmos. Sci., 47, 2784–2802. doi: 10.1175/1520-0469(1990)047<2784:AODEPM>2.0.CO;2
[20] Kain, J. S., and J. M. Fritsch., 1993: Convective parameterization for mesoscale models: The Kain–Fritsch scheme. The Representation of Cumulus Convection in Numerical Models, K. A. Emanuel, and D. J. Raymond, Eds., American Meteorological Society, Boston, MA, 165–170.
[21] Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170–181. doi: 10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2
[22] Liu, C. S., and Q. N. Xiao, 2013: An ensemble-based four-dimensional variational data assimilation scheme. Part III: Antarctic applications with Advanced Research WRF using real data. Mon. Wea. Rev., 141, 2721–2739. doi: 10.1175/MWR-D-12-00130.1
[23] Liu, C. S., Q. N. Xiao, and B. Wang, 2009: An ensemble-based four-dimensional variational data assimilation scheme. Part II: Observing System Simulation Experiments with Advanced Research WRF (ARW). Mon. Wea. Rev., 137, 1687–1704. doi: 10.1175/2008MWR2699.1
[24] Lorenc, A. C., 2003: The potential of the ensemble Kalman filter for NWP—A comparison with 4D-Var. Quart. J. Roy. Meteor. Soc., 129, 3183–3203. doi: 10.1256/qj.02.132
[25] Ma, X. L., J. S. Xue, and W. S. Lu, 2008: Preliminary study on ensemble transform Kalman filter-based initial perturbation scheme in GRAPES global ensemble prediction. Acta. Meteor. Sinica, 66, 526–536. (in Chinese) doi: 10.3321/j.issn:0577-6619.2008.04.006
[26] Ma, X.-L., X. Lu, Y.-M. Yu, et al., 2014: Progress on hybrid ensemble-variational data assimilation in numerical weather prediction. J. Trop. Meteor., 30, 1118–1195. (in Chinese) doi: 10.3969/j.issn.1004-4965.2014.06.020
[27] Molteni, F., R. Buizza, T. N. Palmer, et al., 1996: The ECMWF ensemble prediction system: Methodology and validation. Quart. J. Roy. Meteor. Soc., 122, 73–119. doi: 10.1002/qj.49712252905
[28] Monache, L. D., T. Nipen, X. X. Deng, et al., 2006: Ozone ensemble forecasts: 2. A Kalman filter predictor bias correction. J. Geophys. Res. Atmos., 111, D05308. doi: 10.1029/2005JD006311
[29] Mullen, S. L., and D. P. Baumhefner, 1994: Monte Carlo simulations of explosive cyclogenesis. Mon. Wea. Rev., 122, 1548–1567. doi: 10.1175/1520-0493(1994)122<1548:MCSOEC>2.0.CO;2
[30] Pan, H.-L., and W.-S. Wu, 1995: Implementing a Mass Flux Convective Parameterization Package for the NMC Medium-Range Forecast Model. NMC Office Note 409, NMC Office, Washington DC, 1–40.
[31] Raftery, A. E., T. Gneiting, F. Balabdaoui, et al., 2005: Using Bayesian model averaging to calibrate forecast ensembles. Mon. Wea. Rev., 133, 1155–1174. doi: 10.1175/MWR2906.1
[32] Ren, H. L., and J. F. Chou, 2005: Analogue correction method of errors by combining both statistical and dynamical methods together. Acta. Meteor. Sinica, 63, 988–993. (in Chinese) doi: 10.3321/j.issn:0577-6619.2005.06.015
[33] Shutts, G., 2005: A kinetic energy backscatter algorithm for use in ensemble prediction systems. Quart. J. Roy. Meteor. Soc., 131, 3079–3102. doi: 10.1256/qj.04.106
[34] Tennant, W. J., G. J. Shutts, A. Arribas, et al., 2010: Using a stochastic kinetic energy backscatter scheme to improve MOGREPS probabilistic forecast skill. Mon. Wea. Rev., 139, 1190–1206. doi: 10.1175/2010MWR3430.1
[35] Toth, Z., and E. Kalnay, 1993: Ensemble forecasting at NMC: The generation of perturbations. Bull. Amer. Meteor. Soc., 74, 2317–2330. doi: 10.1175/1520-0477(1993)074<2317:EFANTG>2.0.CO;2
[36] Toth, Z., and E. Kalnay, 1997: Ensemble forecasting at NCEP and the breeding method. Mon. Wea. Rev., 125, 3297–3319. doi: 10.1175/1520-0493(1997)125<3297:EFANAT>2.0.CO;2
[37] Toth, Z., O. Talagrand, G. Candille, et al., 2003: Probability and ensemble forecasts. Forecast Verification: A Practitioner’s Guide in Atmospheric Science, I. T. Jolliffe, and D. B. Stephenson, Eds., Wiley, New York, 137–163.
[38] Wang, H. X., and X. F. Zhi, 2015: Statistical downscaling of precipitation forecast based on TIGGE multimodel ensemble. J. Meteor. Sci., 35, 430–437. (in Chinese) doi: 10.3969/2014jms.0058
[39] Wang, J. Z., J. Chen, J. Du, et al., 2018: Sensitivity of ensemble forecast verification to model bias. Mon. Wea. Rev., 146, 781–796. doi: 10.1175/MWR-D-17-0223.1
[40] Wang, X. G., 2011: Application of the WRF hybrid ETKF-3DVAR data assimilation system for hurricane track forecasts. Wea. Forecasting, 26, 868–884. doi: 10.1175/WAF-D-10-05058.1
[41] Wang, X. G., and C. H. Bishop, 2003: A comparison of breeding and ensemble transform Kalman filter ensemble forecast schemes. J. Atmos. Sci., 60, 1140–1158. doi: 10.1175/1520-0469(2003)060<1140:ACOBAE>2.0.CO;2
[42] Wang, X. G., D. M. Barker, C. Snyder, et al., 2008a: A hybrid ETKF-3DVAR data assimilation scheme for the WRF model. Part I: Observing system simulation experiment. Mon. Wea. Rev., 136, 5116–5131. doi: 10.1175/2008MWR2444.1
[43] Wang, X. G., D. M. Barker, C. Snyder, et al., 2008b: A hybrid ETKF-3DVAR data assimilation scheme for the WRF model. Part II: Real observation experiments. Mon. Wea. Rev., 136, 5132–5147. doi: 10.1175/2008MWR2445.1
[44] Wang, X. G., D. Parrish, D. Kleist, et al., 2013: GSI 3DVAR-based ensemble–variational hybrid data assimilation for NCEP global forecast system: Single-resolution experiments. Mon. Wea. Rev., 141, 4098–4117. doi: 10.1175/MWR-D-12-00141.1
[45] Wei, M. Z., Z. Toth, R. Wobus, et al., 2006: Ensemble transform Kalman Filter-based ensemble perturbations in an operational global prediction system at NCEP. Tellus A: Dyn. Meteor. Oceanogr., 58, 28–44. doi: 10.1111/j.1600-0870.2006.00159.x
[46] Wilby, R. L., and T. M. L. Wigley, 1997: Downscaling general circulation model output: A review of methods and limitations. Prog. Phys. Geogr.: Earth Environ., 21, 530–548. doi: 10.1177/030913339702100403
[47] Xia, Y., J. Chen, Y. Liu, et al., 2018: A tentative experiment of GRAPES En-3DVAR hybrid data assimilation method over the Tibet Plateau. Trans. Atmos. Sci., 41, 239–247. (in Chinese) doi: 10.13878/j.cnki.dqkxxb.20160119001
[48] Xia, Y., J. Chen, J. Du, et al., 2019: A unified scheme of stochastic physics and bias correction in an ensemble model to reduce both random and systematic errors. Wea. Forecasting, 34, 1675–1691. doi: 10.1175/WAF-D-19-0032.1
[49] Yuan, Y., X. L. Li, J. Chen, et al., 2016: Stochastic parameterization toward model uncertainty for the GRAPES mesoscale ensemble prediction system. Meteor. Mon., 42, 1161–1175. (in Chinese) doi: 10.7519/j.issn.1000-0526.2016.10.001
[50] Zhang, F. Q., Y. H. Weng, J. A. Sippel, et al., 2009: Cloud-resolving hurricane initialization and prediction through assimilation of Doppler radar observations with an Ensemble Kalman Filter. Mon. Wea. Rev., 137, 2105–2125. doi: 10.1175/2009MWR2645.1
[51] Zhang, M. Y., L. F. Zhang, B. Zhang, et al., 2015: Flow-dependent characteristics of background error covariance in hybrid variational–ensemble data assimilation. J. Meteor. Sci., 35, 728–736. (in Chinese) doi: 10.3969/2015jms.0069