[1] Alfaro, D. A., 2017: Low-tropospheric shear in the structure of squall lines: Impacts on latent heating under layer-lifting ascent. J. Atmos. Sci., 74, 229–248. doi: 10.1175/JAS-D-16-0168.1
[2] Alfaro, D. A., and M. Khairoutdinov, 2015: Thermodynamic constraints on the morphology of simulated midlatitude squall lines. J. Atmos. Sci., 72, 3116–3137. doi: 10.1175/JAS-D-14-0295.1
[3] Barker, D. M., W. Huang, Y. R. Guo, et al., 2004: A three-dimensional variational data assimilation system for MM5: Implementation and initial results. Mon. Wea. Rev., 132, 897–914. doi: 10.1175/1520-0493(2004)132<0897:ATVDAS>2.0.CO;2
[4] Barthlott, C., and D. J. Kirshbaum, 2013: Sensitivity of deep convection to terrain forcing over Mediterranean islands. Quart. J. Roy. Meteor. Soc., 139, 1762–1779. doi: 10.1002/qj.2089
[5] Benjamin, T. B., 1968: Gravity currents and related phenomena. J. Fluid Mech., 31, 209–248. doi: 10.1017/S0022112068000133
[6] Cai, F., and Y. N. Pan, 2010: A numerical simulation study of surface flux impacts on the development of a squall line. J. Trop. Meteor., 26, 105–110. (in Chinese) doi: 10.3969/j.issn.1004-4965.2010.01.016
[7] Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface-hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569–585. doi: 10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2
[8] Chen, M. X., and Y. C. Wang, 2012: Numerical simulation study of interactional effects of the low-level vertical wind shear with the cold pool on a squall line evolution in North China. Acta Meteor. Sinica, 70, 371–386. (in Chinese) doi: 10.11676/qxxb2012.033
[9] Chen, X. C., K. Zhao, J. Z. Sun, et al., 2016: Assimilating surface observations in a four-dimensional variational Doppler radar data assimilation system to improve the analysis and forecast of a squall line case. Adv. Atmos. Sci., 33, 1106–1119. doi: 10.1007/s00376-016-5290-0
[10] Clark, D. B., C. M. Taylor, and A. J. Thorpe, 2004: Feedback between the land surface and rainfall at convective length scales. J. Hydrometeor., 5, 625–639. doi: 10.1175/1525-7541(2004)005<0625:FBTLSA>2.0.CO;2
[11] Collins, W. D., P. J. Rasch, B. A. Boville, et al., 2004: Description of the NCAR Community Atmosphere Model (CAM 3.0). NCAR Technical Note NCAR/TN-464+STR. Boulder, 1–214, doi: 10.5065/D63N21CH.
[12] Frame, J., and P. Markowski, 2006: The interaction of simulated squall lines with idealized mountain ridges. Mon. Wea. Rev., 134, 1919–1941. doi: 10.1175/MWR3157.1
[13] French, A. J., and M. D. Parker, 2010: The response of simulated nocturnal convective systems to a developing low-level jet. J. Atmos. Sci., 67, 3384–3408. doi: 10.1175/2010JAS3329.1
[14] Hong, S. Y., J. Dudhia, and S. H. Chen, 2004: A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon. Wea. Rev., 132, 103–120. doi: 10.1175/1520-0493(2004)132<0103:ARATIM>2.0.CO;2
[15] Hu, M., M. Xue, and K. Brewster, 2006: 3DVAR and cloud analysis with WSR-88D Level-II data for the prediction of the Fort Worth, Texas, tornadic thunderstorms. Part I: Cloud analysis and its impact. Mon. Wea. Rev., 134, 675–698. doi: 10.1175/MWR3092.1
[16] Janjić, Z. I., 1994: The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Wea. Rev., 122, 927–945. doi: 10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2
[17] Jirak, I. L., W. R. Cotton, and R. L. McAnelly, 2003: Satellite and radar survey of mesoscale convective system development. Mon. Wea. Rev., 131, 2428–2449. doi: 10.1175/1520-0493(2003)131<2428:SARSOM>2.0.CO;2
[18] Kain, J. S., 2004: The Kain-Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170–181. doi: 10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2
[19] Kalnay, E., M. Kanamitsu, R. Kistler, et al., 1996: The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 77, 437–472. doi: 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
[20] Letkewicz, C. E., and M. D. Parker, 2010: Forecasting the maintenance of mesoscale convective systems crossing the Appalachian Mountains. Wea. Forecasting, 25, 1179–1195. doi: 10.1175/2010WAF2222379.1
[21] Meng, Z. Y., and F. Q. Zhang, 2008a: Tests of an ensemble Kalman filter for mesoscale and regional-scale data assimilation. Part III: Comparison with 3DVAR in a real-data case study. Mon. Wea. Rev., 136, 522–540. doi: 10.1175/2007MWR2106.1
[22] Meng, Z. Y., and F. Q. Zhang, 2008b: Tests of an ensemble Kalman filter for mesoscale and regional-scale data assimilation. Part IV: Comparison with 3DVAR in a month-long experiment. Mon. Wea. Rev., 136, 3671–3682. doi: 10.1175/2008MWR2270.1
[23] Meng, Z. Y., F. Q. Zhang, P. Markowski, et al., 2012: A modeling study on the development of a bowing structure and associated rear inflow within a squall line over south China. J. Atmos. Sci., 69, 1182–1207. doi: 10.1175/JAS-D-11-0121.1
[24] Meng, Z. Y., D. C. Yan, and Y. J. Zhang, 2013: General features of squall lines in East China. Mon. Wea. Rev., 141, 1629–1647. doi: 10.1175/MWR-D-12-00208.1
[25] Moncrieff, M. W., and C. H. Liu, 1999: Convection initiation by density currents: Role of convergence, shear, and dynamical organization. Mon. Wea. Rev., 127, 2455–2464. doi: 10.1175/1520-0493(1999)127<2455:CIBDCR>2.0.CO;2
[26] National Centers for Environmental Prediction (NCEP), National Weather Service (NWS), NOAA, et al., 2000: NCEP FNL Operational Model Global Tropospheric Analyses, Continuing from July 1999. Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory. Available online at 10.5065/D6M043C6. Accessed on 25 June 2017.
[27] NCAR, 2016: User’s Guide for the Advanced Research WRF (ARW) Modeling System Version 3.8. National Center for Atmospheric Research, 434 pp. Available online at www2.mmm.ucar.edu/wrf/users/docs/user_guide_V3.8/contents.html.
[28] Noh, Y., W. G. Cheon, S. Y. Hong, et al., 2003: Improvement of the K-profile model for the planetary boundary layer based on large eddy simulation data. Bound-Layer Meteor., 107, 401–427. doi: 10.1023/A:1022146015946
[29] Oberthaler, A. J., and P. M. Markowski, 2013: A numerical simulation study of the effects of anvil shading on quasi-linear convective systems. J. Atmos. Sci., 70, 767–793. doi: 10.1175/JAS-D-12-0123.1
[30] Parker, M. D., and R. H. Johnson, 2000: Organizational modes of midlatitude mesoscale convective systems. Mon. Wea. Rev., 128, 3413–3436. doi: 10.1175/1520-0493(2001)129<3413:OMOMMC>2.0.CO;2
[31] Parker, M. D., and R. H. Johnson, 2004: Simulated convective lines with leading precipitation. Part I: Governing dynamics. J. Atmos. Sci., 61, 1637–1655. doi: 10.1175/1520-0469(2004)061<1637:SCLWLP>2.0.CO;2
[32] Parrish, D. F., and J. C. Derber, 1992: The National Meteorologi-cal Center’s spectral statistical-interpolation analysis system. Mon. Wea. Rev., 120, 1747–1763. doi: 10.1175/1520-0493(1992)120<1747:TNMCSS>2.0.CO;2
[33] Peters, K., and C. Hohenegger, 2017: On the dependence of squall-line characteristics on surface conditions. J. Atmos. Sci., 74, 2211–2228. doi: 10.1175/JAS-D-16-0290.1
[34] Qiu, X. X., and F. Q. Zhang, 2016: Prediction and predictability of a catastrophic local extreme precipitation event through cloud-resolving ensemble analysis and forecasting with Doppler radar observations. Sci. China Earth Sci., 59, 518–532. doi: 10.1007/s11430-015-5224-1
[35] Rotunno, R., J. B. Klemp, and M. L. Weisman, 1988: A theory for strong, long-lived squall lines. J. Atmos. Sci., 45, 463–485. doi: 10.1175/1520-0469(1988)045<0463:ATFSLL>2.0.CO;2
[36] Rudari, R., D. Entekhabi, and G. Roth, 2004: Terrain and multiple-scale interactions as factors in generating extreme precipitation events. J. Hydrometeor., 5, 390–404. doi: 10.1175/1525-7541(2004)005<0390:TAMIAF>2.0.CO;2
[37] Schenkman, A. D., M. Xue, A. Shapiro, et al., 2011: The analysis and prediction of the 8–9 May 2007 Oklahoma tornadic mesoscale convective system by assimilating WSR-88D and CASA radar data using 3DVAR. Mon. Wea. Rev., 139, 224–246. doi: 10.1175/2010MWR3336.1
[38] Schlemmer, L., and C. Hohenegger, 2014: The formation of wider and deeper clouds as a result of cold-pool dynamics. J. Atmos. Sci., 71, 2842–2858. doi: 10.1175/JAS-D-13-0170.1
[39] Sever, G., and Y.-L. Lin, 2017: Dynamical and physical processes associated with orographic precipitation in a conditionally unstable uniform flow: Variation in basic wind speed. J. Atmos. Sci., 74, 449–466. doi: 10.1175/JAS-D-16-0077.1
[40] Shen, X. Y., S. J. Yue, J. Liu, et al., 2016: Effects of latent heating and surface heat fluxes on a squall line process. J. Meteor. Sci., 36, 709–720. (in Chinese) doi: 10.3969/2016jms.0013
[41] Skamarock, W. C., J. B. Klemp, J. Dudhia, et al., 2008: A Description of the Advanced Research WRF Version 3. NCAR Technical Note NCAR/TN-475+STR. Boulder, 1–113, doi: 10.5065/D68S4MVH.
[42] Sun, W. Y., and Y. Ogura, 1979: Boundary-layer forcing as a possible trigger to a squall-line formation. J. Atmos. Sci., 36, 235–254. doi: 10.1175/1520-0469(1979)036<0235:BLFAAP>2.0.CO;2
[43] Takemi, T., 2007: Environmental stability control of the intensity of squall lines under low-level shear conditions. J. Geophys. Res. Atmos., 112 . doi: 10.1029/2007JD008793
[44] Tawfik, A. B., and P. A. Dirmeyer, 2014: A process-based framework for quantifying the atmospheric preconditioning of surface-triggered convection. Geophys. Res. Lett., 41, 173–178. doi: 10.1002/2013GL057984
[45] Weckwerth, T. M., 2000: The effect of small-scale moisture variability on thunderstorm initiation. Mon. Wea. Rev., 128, 4017–4030. doi: 10.1175/1520-0493(2000)129<4017:TEOSSM>2.0.CO;2
[46] Weckwerth, T. M., L. J. Bennett, L. J. Miller, et al., 2014: An observational and modeling study of the processes leading to deep, moist convection in complex terrain. Mon. Wea. Rev., 142, 2687–2708. doi: 10.1175/MWR-D-13-00216.1
[47] Weisman, M. L., 1993: The genesis of severe, long-lived bow echoes. J. Atmos. Sci., 50, 645–670. doi: 10.1175/1520-0469(1993)050<0645:TGOSLL>2.0.CO;2
[48] Weisman, M. L., J. B. Klemp, and R. Rotunno, 1988: Structure and evolution of numerically simulated squall lines. J. Atmos. Sci., 45, 1990–2013. doi: 10.1175/1520-0469(1988)045<1990:SAEONS>2.0.CO;2
[49] Wheatley, D. M., and R. J. Trapp, 2008: The effect of mesoscale heterogeneity on the genesis and structure of mesovortices within quasi-linear convective systems. Mon. Wea. Rev., 136, 4220–4241. doi: 10.1175/2008MWR2294.1
[50] Wolters, D., C. C. van Heerwaarden, J. V.-G. de Arellano, et al., 2010: Effects of soil moisture gradients on the path and the intensity of a West African squall line. Quart. J. Roy. Meteor. Soc., 136, 2162–2175. doi: 10.1002/qj.712
[51] Zhang, F. Q., Z. Y. Meng, and A. Aksoy, 2006: Tests of an ensemble Kalman filter for mesoscale and regional-scale data assimilation. Part I: Perfect model experiments. Mon. Wea. Rev., 134, 722–736. doi: 10.1175/MWR3101.1
[52] Zhang, Y., Z. Y. Meng, P. J. Zhu, et al., 2016: Mesoscale modeling study of severe convection over complex terrain. Adv. Atmos. Sci., 33, 1259–1270. doi: 10.1007/s00376-016-5221-0
[53] Zheng, L. L., J. H. Sun, X. L. Zhang, et al., 2013: Organizational modes of mesoscale convective systems over central East China. Wea. Forecasting, 28, 1081–1098. doi: 10.1175/WAF-D-12-00088.1