[1] Bao, X. H., Y. L. Luo, J. X. Sun, et al., 2017: Assimilating Doppler radar observations with an ensemble Kalman filter for convection-permitting prediction of convective development in a heavy rainfall event during the pre-summer rainy season of south China. Sci. China Earth Sci., 60, 1866–1885. doi: 10.1007/s11430-017-9076-9
[2] Barthlott, C., and D. J. Kirshbaum, 2013: Sensitivity of deep convection to terrain forcing over Mediterranean islands. Quart. J. Roy. Meteor. Soc., 139, 1762–1779. doi: 10.1002/qj.2089
[3] Birch, C. E., M. J. Roberts, L. Garcia-Carreras, et al., 2015: Sea-breeze dynamics and convection initiation: The influence of convective parameterization in weather and climate model biases. J. Climate, 28, 8093–8108. doi: 10.1175/JCLI-D-14-00850.1
[4] Bluestein, H. B., and M. H. Jain, 1985: Formation of mesoscale lines of pirecipitation: Severe squall lines in Oklahoma during the spring. J. Atmos. Sci., 42, 1711–1732. doi: 10.1175/1520-0469(1985)042<1711:FOMLOP>2.0.CO;2
[5] Chen, G. X., R. Y. Lan, W. X. Zeng, et al., 2018: Diurnal variations of rainfall in surface and satellite observations at the monsoon coast (South China). J. Climate, 31, 1703–1724. doi: 10.1175/JCLI-D-17-0373.1
[6] Chen, X. C., F. Q. Zhang, and K. Zhao, 2016: Diurnal variations of the land–sea breeze and its related precipitation over South China. J. Atmos. Sci., 73, 4793–4815. doi: 10.1175/JAS-D-16-0106.1
[7] Chen, X. C., F. Q. Zhang, and K. Zhao, 2017: Influence of monsoonal wind speed and moisture content on intensity and diurnal variations of the Mei-Yu season coastal rainfall over south China. J. Atmos. Sci., 74, 2835–2856. doi: 10.1175/JAS-D-17-0081.1
[8] Chen, X. C., K. Zhao, and M. Xue, 2014: Spatial and temporal characteristics of warm season convection over Pearl River Delta region, China, based on 3 years of operational radar data. J. Geophys. Res. Atmos., 119, 12447–12465. doi: 10.1002/2014JD021965
[9] Cheng, A. N., 2005a: Organization of mesoscale convective systems: 1. Numerical experiments. J. Geophys. Res. Atmos., 110, D15S11. doi: 10.1029/2004JD005444
[10] Cheng, A. N., 2005b: Organization of mesoscale convective systems: 2. Linear theory. J. Geophys. Res. Atmos., 110, D15S12. doi: 10.1029/2004JD005450
[11] Cressman, G. P., 1959: An operational objective analysis system. Mon. Wea. Rev., 87, 367–374. doi: 10.1175/1520-0493(1959)087<0367:AOOAS>2.0.CO;2
[12] Darby, L. S., R. M. Banta, and R. A. Pielke Sr., 2002: Comparisons between mesoscale model terrain sensitivity studies and Doppler lidar measurements of the sea breeze at Monterey Bay. Mon. Wea. Rev., 130, 2813–2838. doi: 10.1175/1520-0493(2002)130<2813:CBMMTS>2.0.CO;2
[13] Davis, R. S., 2001: Flash flood forecast and detection methods. Severe Convective Storms, C. A. Doswell III, Ed., American Meteorological Society, Boston, 481–525, doi: 10.1007/978-1-935704-06-5_12.
[14] Ding, Y. H., 1994: Monsoons over China. Kluwer Academic, Dordrecht, 420 pp.
[15] Doswell III, C. A., H. E. Brooks, and R. A. Maddox, 1996: Flash flood forecasting: An ingredients-based methodology. Wea. Forecasting, 11, 560–581. doi: 10.1175/1520-0434(1996)011<0560:FFFAIB>2.0.CO;2
[16] Du, Y., and G. X. Chen, 2018: Heavy rainfall associated with double low-level jets over southern China. Part I: Ensemble-based analysis. Mon. Wea. Rev., 146, 3827–3844. doi: 10.1175/MWR-D-18-0101.1
[17] Du, Y., and R. Rotunno, 2018: Diurnal cycle of rainfall and winds near the south coast of China. J. Atmos. Sci., 75, 2065–2082. doi: 10.1175/JAS-D-17-0397.1
[18] Du, Y., and G. X. Chen, 2019: Heavy rainfall associated with double low-level jets over southern China. Part II: Convection initiation. Mon. Wea. Rev., 147, 543–565. doi: 10.1175/MWR-D-18-0102.1
[19] Du, Y., G. X. Chen, B. Han, et al., 2020a: Convection initiation and growth at the coast of South China. Part I: Effect of the marine boundary layer jet. Mon. Wea. Rev., 148, 3847–3869. doi: 10.1175/MWR-D-20-0089.1
[20] Du, Y., G. X. Chen, B. Han, et al., 2020b: Convection initiation and growth at the coast of South China. Part II: Effects of the terrain, coastline, and cold pools. Mon. Wea. Rev., 148, 3871–3892. doi: 10.1175/MWR-D-20-0090.1
[21] Furtado, K., P. R. Field, Y. L. Luo, et al., 2018: Cloud microphysical factors affecting simulations of deep convection during the presummer rainy season in southern China. J. Geophys. Res. Atmos., 123, 10477–10505. doi: 10.1029/2017JD028192
[22] Furtado, K., P. Field, Y. L. Luo, et al., 2020: The effects of cloud–aerosol interaction complexity on simulations of presummer rainfall over southern China. Atmos. Chem. Phys., 20, 5093–5110. doi: 10.5194/acp-20-5093-2020
[23] He, L. F., T. Chen, and Q. Kong, 2016: A review of studies on prefrontal torrential rain in South China. J. Appl. Meteor. Sci., 27, 559–569. (in Chinese) doi: 10.11898/1001-7313.20160505
[24] Hersbach, H., and D. Dee, 2016: ERA5 reanalysis is in production. ECMWF Newsletter, 147, 7−7. Avaiable online at https://www.ecmwf.int/en/newsletter/147/news/era5-reanalysis-production. Accessed on 7 April 2021.
[25] Huang, L., and Y. L. Luo, 2017: Evaluation of quantitative precipitation forecasts by TIGGE ensembles for South China during the presummer rainy season. J. Geophys. Res. Atmos., 122, 8494–8516. doi: 10.1002/2017JD026512
[26] Huang, S. S., 1986: Rain Storms in South China in Early Summer. Guangdong Science and Technology Press, Guangzhou, 9–10. (in Chinese)
[27] Huang, Y. J., Y. B. Liu, Y. W. Liu, et al., 2019: Mechanisms for a record-breaking rainfall in the coastal metropolitan city of Guangzhou, China: Observation analysis and nested very large eddy simulation with the WRF model. J. Geophys. Res. Atmos., 124, 1370–1391. doi: 10.1029/2018JD029668
[28] Jiang, Z. N., D.-L. Zhang, R. D. Xia, et al., 2017: Diurnal variations of presummer rainfall over southern China. J. Climate, 30, 755–773. doi: 10.1175/JCLI-D-15-0666.1
[29] Li, Y. P., and R. E. Carbone, 2015: Offshore propagation of coastal precipitation. J. Atmos. Sci., 72, 4553–4568. doi: 10.1175/JAS-D-15-0104.1
[30] Liang, Q. Q., S. X. Xiang, L. G. Lin, et al., 2012: MCS characteristics over South China during the annually first rainy season and their organization types. J. Trop. Meteor., 28, 541–551. (in Chinese)
[31] Liang, Z. M., R. G. Fovell, and Y. Liu, 2019: Observational analysis of the characteristics of the synoptic situation and evolution of the organized warm-sector rainfall in the coastal region of South China in the pre-summer rainy season. Atmosphere, 10, 722. doi: 10.3390/atmos10110722
[32] Lin, L. X., 2006: Technical Guidance on Weather Forecating in Guangdong Province. China Meteorological Press, Beijing, 526 pp. (in Chinese)
[33] Liu, X., Y. L. Luo, Z. Y. Guan, et al., 2018: An extreme rainfall event in coastal South China during SCMREX-2014: Formation and roles of rainband and echo trainings. J. Geophy. Res. Atmos., 123, 9256–9278. doi: 10.1029/2018JD028418
[34] Luo, Y. L., R. H. Zhang, Q. L. Wan, et al., 2017: The Southern China Monsoon Rainfall Experiment (SCMREX). Bull. Amer. Meteor. Soc., 98, 999–1013. doi: 10.1175/BAMS-D-15-00235.1
[35] Mu, J. L., J. J. Wang, and Z. C. Li, 2008: A study of environment and mesoscale convective systems of continuous heavy rainfall in the south of China in June 2005. Acta Meteor. Sinica, 66, 437–451. (in Chinese)
[36] Ni, Y. Q., R. H. Zhang, L. P. Liu, et al., 2013: South China Heavy Rainfall Field Experiment. China Meteorological Press, Beijing, 299 pp. (in Chinese)
[37] Parker, M. D., 2007: Simulated convective lines with parallel stratiform precipitation. Part II: Governing dynamics and associated sensitivities. J. Atmos. Sci., 64, 289–313. doi: 10.1175/JAS3854.1
[38] Parker, M. D., and R. H. Johnson, 2000: Organizational modes of midlatitude mesoscale convective systems. Mon. Wea. Rev., 128, 3413–3436. doi: 10.1175/1520-0493(2001)129<3413:OMOMMC>2.0.CO;2
[39] Qian, Q. F., Y. L. Lin, Y. L. Luo, et al., 2018: Sensitivity of a simulated squall line during Southern China Monsoon Rainfall Experiment to parameterization of microphysics. J. Geophys. Res. Atmos., 123, 4197–4220. doi: 10.1002/2017JD027734
[40] Ren, Z. H., Z. F. Zhang, C. Sun, et al., 2015: Development of three-step quality control system of real-time observation data from AWS in China. Meteor. Mon., 41, 1268–1277. (in Chinese)
[41] Rotunno, R., J. B. Klemp, and M. L. Weisman, 1988: A theory for strong, long-lived squall lines. J. Atmos. Sci., 45, 463–485. doi: 10.1175/1520-0469(1988)045<0463:ATFSLL>2.0.CO;2
[42] Schumacher, R. S., and R. H. Johnson, 2005: Organization and environmental properties of extreme-rain-producing mesoscale convective systems. Mon. Wea. Rev., 133, 961–976. doi: 10.1175/MWR2899.1
[43] Wang, H. Y., L. P. Liu, G. L. Wang, et al., 2009: Development and application of the Doppler weather radar 3-D digital mosaic system. J. Appl. Meteor. Sci., 20, 214–224. (in Chinese) doi: 10.3969/j.issn.1001-7313.2009.02.011
[44] Wang, H., Y. L. Luo, and B. J.-D. Jou, 2014: Initiation, maintenance, and properties of convection in an extreme rainfall event during SCMREX: Observational analysis. J. Geophys. Res. Atmos., 119, 13206–13232. doi: 10.1002/2014JD022339
[45] Weisman, M. L., and R. Rotunno, 2004: “A theory for strong long-lived squall lines” revisited. J. Atmos. Sci., 61, 361–382. doi: 10.1175/1520-0469(2004)061<0361:ATFSLS>2.0.CO;2
[46] Weisman, M. L., J. B. Klemp, and R. Rotunno, 1988: Structure and evolution of numerically simulated squall lines. J. Atmos. Sci., 45, 1990–2013. doi: 10.1175/1520-0469(1988)045<1990:SAEONS>2.0.CO;2
[47] Wu, M. W., and Y. L. Luo, 2016: Mesoscale observational analysis of lifting mechanism of a warm-sector convective system producing the maximal daily precipitation in China mainland during pre-summer rainy season of 2015. J. Meteor. Res., 30, 719–736. doi: 10.1007/s13351-016-6089-8
[48] Wu, M. W., Y. L. Luo, F. Chen, et al., 2019: Observed link of extreme hourly precipitation changes to urbanization over coastal South China. J. Appl. Meteor. Climatol., 58, 1799–1819. doi: 10.1175/JAMC-D-18-0284.1
[49] Xu, Y., J. H. Yan, Q. Q. Wang, et al., 2013: A low-level gravity wave triggering mechanism for rainstorm of warm zone in South China. Plateau Meteor., 32, 1050–1061. (in Chinese)
[50] Zhang, R. H., Y. Q. Ni, L. P. Liu, et al., 2011: South China heavy rainfall experiments (SCHeREX). J. Meteor. Soc. Japan., 89A, 153–166. doi: 10.2151/jmsj.2011-A10
[51] Zhang, X. B., 2018: Application of a convection-permitting ensemble prediction system to quantitative precipitation forecasts over southern China: Preliminary results during SCMREX. Quart. J. Roy. Meteor. Soc., 144, 2842–2862. doi: 10.1002/qj.3411
[52] Zhang, X. B., 2019: Multiscale characteristics of different-source perturbations and their interactions for convection-permitting ensemble forecasting during SCMREX. Mon. Wea. Rev., 147, 291–310. doi: 10.1175/MWR-D-18-0218.1
[53] Zhang, X. B., Y. L. Luo, Q. L. Wan, et al., 2016: Impact of assimilating wind profiling radar observations on convection-permitting quantitative precipitation forecasts during SCMREX. Wea. Forecasting, 31, 1271–1292. doi: 10.1175/WAF-D-15-0156.1
[54] Zhao, S. X., N. F. Bei, and J. H. Sun, 2007: Mesoscale analysis of a heavy rainfall event over Hong Kong during a pre-rainy season in South China. Adv. Atmos. Sci., 24, 555–572. doi: 10.1007/s00376-007-0555-2
[55] Zhong, S. X., and Z. T. Chen, 2017: The impacts of atmospheric moisture transportation on warm sector torrential rains over South China. Atmosphere, 8, 116. doi: 10.3390/atmos8070116
[56] Zhou, X. J., J. S. Xue, Z. Y. Tao, et al., 2003: Scientific Test Study of Rainstorms in Huanan in 1998. China Meteorological Press, Beijing, 370 pp. (in Chinese)