[1] Acevedo, O. C., and D. R. Fitzjarrald, 2003: In the core of the night-effects of intermittent mixing on a horizontally heterogeneous surface. Bound.-Layer Meteor., 106, 1–33. doi: 10.1023/a:1020824109575
[2] Banta, R. M., Y. L. Pichugina, and W. A. Brewer, 2006: Turbulent velocity-variance profiles in the stable boundary layer generated by a nocturnal low-level jet. J. Atmos. Sci., 63, 2700–2719. doi: 10.1175/jas3776.1
[3] Banta, R. M., L. Mahrt, D. Vickers, et al., 2007: The very stable boundary layer on nights with weak low-level jets. J. Atmos. Sci., 64, 3068–3090. doi: 10.1175/jas4002.1
[4] Baumbach, G., and U. Vogt, 1999: Experimental determination of the effect of mountain-valley breeze circulation on air pollution in the vicinity of Freiburg. Atmos. Environ., 33, 4019–4027. doi: 10.1016/s1352-2310(99)00143-0
[5] Bressi, M., J. Sciare, V. Ghersi, et al., 2013: A one-year comprehensive chemical characterisation of fine aerosol (PM2.5) at urban, suburban and rural background sites in the region of Paris (France). Atmos. Chem. Phys., 13, 7825–7844. doi: 10.5194/acp-13-7825-2013
[6] Cai, W. J., K. Li, H. Liao, et al., 2017: Weather conditions conducive to Beijing severe haze more frequent under climate change. Nat. Climate Change, 7, 257–262. doi: 10.1038/nclimate3249
[7] Charlson, R. J., S. E. Schwartz, J. M. Hales, et al., 1992: Climate forcing by anthropogenic aerosols. Science, 255, 423–430. doi: 10.1126/science.255.5043.423
[8] Chen, H. P., and H. J. Wang, 2015: Haze days in North China and the associated atmospheric circulations based on daily visibility data from 1960 to 2012. J. Geophys. Res. Atmos., 120, 5895–5909. doi: 10.1002/2015jd023225
[9] Cheng, N. L., D. W. Zhang, Y. T. Li, et al., 2017: Spatio-temporal variations of PM2.5 concentrations and the evaluation of emission reduction measures during two red air pollution alerts in Beijing. Sci. Rep., 7, 8220. doi: 10.1038/s41598-017-08895-x
[10] Cohen, L., 1995: Time-Frequency Analysis. Prentice Hall, Englewood Cliffs, NJ, 153–161.
[11] Dawson, J. P., P. J. Adams, and S. N. Pandis, 2007: Sensitivity of PM2.5 to climate in the eastern US: A modeling case study. Atmos. Chem. Phys., 7, 4295–4309. doi: 10.5194/acp-7-4295-2007
[12] Deb Burman, P. K., T. V. Prabha, R. Morrison, et al., 2018: A case study of turbulence in the nocturnal boundary layer during the Indian summer monsoon. Bound.-Layer Meteor., 169, 115–138. doi: 10.1007/s10546-018-0364-4
[13] Ding, A. J., C. B. Fu, X. Q. Yang, et al., 2013: Ozone and fine particle in the western Yangtze River Delta: An overview of 1 yr data at the SORPES station. Atmos. Chem. Phys., 13, 5813–5830. doi: 10.5194/acp-13-5813-2013
[14] Dominici, F., M. Greenstone, and C. R. Sunstein, 2014: Particulate matter matters. Science, 344, 257–259. doi: 10.1126/science.1247348
[15] Frisch, U., 1995: Turbulence: The legacy of AN Kolmogorov, Cambridge University Press, UK, 72–97.
[16] Gao, S. H., Y. J. Wang, Y. X. Huang, et al., 2016: Spatial statistics of atmospheric particulate matter in China. Atmos. Environ., 134, 162–167. doi: 10.1016/j.atmosenv.2016.03.052
[17] Grange, S. K., J. A. Salmond, W. J. Trompetter, et al., 2013: Effect of atmospheric stability on the impact of domestic wood combustion to air quality of a small urban township in winter. Atmos. Environ., 70, 28–38. doi: 10.1016/j.atmosenv.2012.12.047
[18] Helgason, W., and J. W. Pomeroy, 2012: Characteristics of the near-surface boundary layer within a mountain valley during winter. J. Appl. Meteor. Climatol., 51, 583–597. doi: 10.1175/jamc-d-11-058.1
[19] Hu, J. L., Y. G. Wang, Q. Ying, et al., 2014: Spatial and temporal variability of PM2.5 and PM10 over the North China Plain and the Yangtze River Delta, China. Atmos. Environ., 95, 598–609. doi: 10.1016/j.atmosenv.2014.07.019
[20] Hu, X. M., Y. Zhang, M. Z. Jacobson, et al., 2008: Coupling and evaluating gas/particle mass transfer treatments for aerosol simulation and forecast. J. Geophys. Res. Atmos., 113, D11208. doi: 10.1029/2007jd009588
[21] Hu, X. M., P. M. Klein, M. Xue, et al., 2013: Impact of the verti-cal mixing induced by low-level jets on boundary layer ozone concentration. Atmos. Environ., 70, 123–130. doi: 10.1016/j.atmosenv.2012.12.046
[22] Huang, N. E., Z. Shen, S. R. Long, et al., 1998: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. Roy. Soc. A. Math. Phys. Eng. Sci., 454, 903–995. doi: 10.1098/rspa.1998.0193
[23] Huang, N. E., Z. Shen, and S. R. Long, 1999: A new view of nonlinear water waves: The Hilbert spectrum. Annu. Rev. Fluid Mech., 31, 417–457. doi: 10.1146/annurev.fluid.31.1.417
[24] Huang, Y. X., F. G. Schmitt, Z. M. Lu, et al., 2008: An amplitude–frequency study of turbulent scaling intermittency using Empirical Mode Decomposition and Hilbert Spectral Analysis. EPL (Europhys. Lett.), 84, 40010. doi: 10.1209/0295-5075/84/40010
[25] Huang, Y. X., F. G. Schmitt, J. P. Hermand, et al., 2011: Arbitrary-order Hilbert spectral analysis for time series possessing scaling statistics: Comparison study with detrended fluctuation analysis and wavelet leaders. Phys. Rev. E, 84, 016208. doi: 10.1103/physreve.84.016208
[26] Jia, B., Y. Wang, Y. Yao, et al., 2015: A new indicator on the impact of large-scale circulation on wintertime particulate matter pollution over China. Atmos. Chem. Phys., 15, 11919–11929. doi: 10.5194/acp-15-11919-2015
[27] Kalthoff, N., V. Horlacher, U. Corsmeier, et al., 2000: Influence of valley winds on transport and dispersion of airborne pollutants in the Freiburg-Schauinsland area. J. Geophys. Res. Atmos., 105, 1585–1597. doi: 10.1029/1999jd900999
[28] Karipot, A., M. Y. Leclerc, G. S. Zhang, et al., 2008: Influence of nocturnal low-level jet on turbulence structure and CO2 flux measurements over a forest canopy. J. Geophys. Res. Atmos., 113, D10102. doi: 10.1029/2007jd009149
[29] Klipp, C. L., and L. Mahrt, 2004: Flux-gradient relationship, self-correlation and intermittency in the stable boundary layer. Quart. J. Roy. Meteor. Soc., 130, 2087–2103. doi: 10.1256/qj.03.161
[30] Kolmogorov, A. N., 1941: The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Dokl. Akad. Nauk SRSS, 30, 301–305.
[31] Mahrt, L., 1998: Nocturnal boundary-layer regimes. Bound.-Layer Meteor., 88, 255–278. doi: 10.1023/a:1001171313493
[32] Mahrt, L., 2014: Stably stratified atmospheric boundary layers. Annu. Rev. Fluid Mech., 46, 23–45. doi: 10.1146/annurev-fluid-010313-141354
[33] Miao, Y. C., J. P. Guo, S. H. Liu, et al., 2017: Relay transport of aerosols to Beijing–Tianjin–Hebei region by multi-scale atmospheric circulations. Atmos. Environ., 165, 35–45. doi: 10.1016/j.atmosenv.2017.06.032
[34] Miao, Y. C., J. P. Guo, S. H. Liu, et al., 2018: The climatology of low-level jet in Beijing and Guangzhou, China. J. Geophys. Res. Atmos., 123, 2816–2830. doi: 10.1002/2017jd027321
[35] Nel, A., 2005: Air pollution-related illness: Effects of particles. Science, 308, 804–806. doi: 10.1126/science.1108752
[36] Noone, D., C. Risi, A. Bailey, et al., 2013: Determining water sources in the boundary layer from tall tower profiles of water vapor and surface water isotope ratios after a snowstorm in Colorado. Atmos. Chem. Phys., 13, 1607–1623. doi: 10.5194/acp-13-1607-2013
[37] Petäjä, T., L. Järvi, V. M. Kerminen, et al., 2016: Enhanced air pollution via aerosol-boundary layer feedback in China. Sci. Rep., 6, 18998. doi: 10.1038/srep18998
[38] Poulos, G. S., W. Blumen, D. C. Fritts, et al., 2002: CASES-99: A comprehensive investigation of the stable nocturnal boundary layer. Bull. Amer. Meteor. Soc., 83, 555–581. doi: 10.1175/1520-0477(2002)083<0555:CACIOT>2.3.CO;2
[39] Quan, J. N., X. X. Tie, Q. Zhang, et al., 2014: Characteristics of heavy aerosol pollution during the 2012–2013 winter in Beijing, China. Atmos. Environ., 88, 83–89. doi: 10.1016/j.atmosenv.2014.01.058
[40] Quan, J. N., Q. Liu, X. Li, et al., 2015: Effect of heterogeneous aqueous reactions on the secondary formation of inorganic aerosols during haze events. Atmos. Environ., 122, 306–312. doi: 10.1016/j.atmosenv.2015.09.068
[41] Reitebuch, O., A. Strassburger, S. Emeis, et al., 2000: Nocturnal secondary ozone concentration maxima analysed by sodar observations and surface measurements. Atmos. Environ., 34, 4315–4329. doi: 10.1016/s1352-2310(00)00185-0
[42] Ren, Y., S. W. Zheng, W. Wei, et al., 2018: Characteristics of turbulent transfer during episodes of heavy haze pollution in Beijing in winter 2016/17. J. Meteor. Res., 32, 69–80. doi: 10.1007/s13351-018-7072-3
[43] Rodriguez, A., A. Sánchez-Arcilla, J. M. Redondo, et al., 1995: Pollutant dispersion in the nearshore region: Modelling and measurements. Water Sci. Technol., 32, 169–178. doi: 10.1016/0273-1223(96)00088-1
[44] Salmond, J. A., 2005: Wavelet analysis of intermittent turbulence in a very stable nocturnal boundary layer: Implications for the vertical mixing of ozone. Bound.-Layer Meteor., 114, 463–488. doi: 10.1007/s10546-004-2422-3
[45] Salmond, J. A., and I. G. McKendry, 2005: A review of turbulence in the very stable nocturnal boundary layer and its implications for air quality. Prog. Phys. Geogr.: Earth Environ., 29, 171–188. doi: 10.1191/0309133305pp442ra
[46] Schäfer, K., S. Emeis, H. Hoffmann, et al., 2006: Influence of mixing layer height upon air pollution in urban and sub-urban areas. Meteor. Z., 15, 647–658. doi: 10.1127/0941-2948/2006/0164
[47] Seibert, P., H. Feldmann, B. Neininger, et al., 2000: South foehn and ozone in the eastern Alps—Case study and climatological aspects. Atmos. Environ., 34, 1379–1394. doi: 10.1016/s1352-2310(99)00439-2
[48] Shao, P. Y., H. Z. Tian, Y. J. Sun, et al., 2018: Characterizing remarkable changes of severe haze events and chemical compositions in multi-size airborne particles (PM1, PM2.5 and PM10) from January 2013 to 2016–2017 winter in Beijing, China. Atmos. Environ., 189, 133–144. doi: 10.1016/j.atmosenv.2018.06.038
[49] Shen, Z., G. X. Cui, and Z. S. Zhang, 2017: Turbulent dispersion of pollutants in urban-type canopies under stable stratification conditions. Atmos. Environ., 156, 1–14. doi: 10.1016/j.atmosenv.2017.02.017
[50] Sorbjan, Z., and A. Czerwinska, 2013: Statistics of turbulence in the stable boundary layer affected by gravity waves. Bound.-Layer Meteor., 148, 73–91. doi: 10.1007/s10546-013-9809-y
[51] Strassburger, A., and W. Kuttler, 1998: Diurnal courses of ozone in an inner urban park. Meteor. Z., 7, 15–18. doi: 10.1127/metz/7/1998/15
[52] Tang, G., X. Li, Y. Wang, et al., 2009: Surface ozone trend details and interpretations in Beijing, 2001–2006. Atmos. Chem. Phys., 9, 8813–8823. doi: 10.5194/acp-9-8813-2009
[53] Tang, G. Q., J. Q. Zhang, X. W. Zhu, et al., 2016: Mixing layer height and its implications for air pollution over Beijing, China. Atmos. Chem. Phys., 16, 2459–2475. doi: 10.5194/acp-16-2459-2016
[54] Tao, S., Y. Wang, S. M. Wu, et al., 2007: Vertical distribution of polycyclic aromatic hydrocarbons in atmospheric boundary layer of Beijing in winter. Atmos. Environ., 41, 9594–9602. doi: 10.1016/j.atmosenv.2007.08.026
[55] Terradellas, E., M. R. Soler, E. Ferreres, et al., 2005: Analysis of oscillations in the stable atmospheric boundary layer using wavelet methods. Bound.-Layer Meteor., 114, 489–518. doi: 10.1007/s10546-004-1293-y
[56] Thompson, T. M., R. K. Saari, and N. E. Selin, 2014: Air quality resolution for health impact assessment: Influence of regional characteristics. Atmos. Chem. Phys., 14, 969–978. doi: 10.5194/acp-14-969-2014
[57] Vindel, J. M., and C. Yagüe, 2011: Intermittency of turbulence in the atmospheric boundary layer: Scaling exponents and stratification influence. Bound.-Layer Meteor., 140, 73–85. doi: 10.1007/s10546-011-9597-1
[58] Walters, J. T., R. T. McNider, X. Z. Shi, et al., 2007: Positive surface temperature feedback in the stable nocturnal boundary layer. Geophys. Res. Lett., 34, L12709. doi: 10.1029/2007gl029505
[59] Wang, G., S. Y. Cheng, J. B. Li, et al., 2015: Source apportionment and seasonal variation of PM2.5 carbonaceous aerosol in the Beijing–Tianjin–Hebei region of China. Environ. Monit. Assess., 187, 143. doi: 10.1007/s10661-015-4288-x
[60] Wang, H., J. X. Xu, M. Zhang, et al., 2014: A study of the meteorological causes of a prolonged and severe haze episode in January 2013 over central–eastern China. Atmos. Environ., 98, 146–157. doi: 10.1016/j.atmosenv.2014.08.053
[61] Wang, L. L., N. Zhang, Z. R. Liu, et al., 2014: The influence of climate factors, meteorological conditions, and boundary-layer structure on severe haze pollution in the Beijing–Tianjin–Hebei region during January 2013. Adv. Meteor., 685971. doi: 10.1155/2014/685971
[62] Wang, T., W. Nie, J. Gao, et al., 2010: Air quality during the 2008 Beijing Olympics: Secondary pollutants and regional impact. Atmos. Chem. Phys., 10, 7603–7615. doi: 10.5194/acp-10-7603-2010
[63] Wang, X. F., W. X. Wang, L. X. Yang, et al., 2012: The secondary formation of inorganic aerosols in the droplet mode through heterogeneous aqueous reactions under haze conditions. Atmos. Environ., 63, 68–76. doi: 10.1016/j.atmosenv.2012.09.029
[64] Wang, Y., M. B. McElroy, J. W. Munger, et al., 2008: Variations of O3 and CO in summertime at a rural site near Beijing. Atmos. Chem. Phys., 8, 6355–6363. doi: 10.5194/acp-8-6355-2008
[65] Wang, Z. F., J. Li, Z. Wang, et al., 2014: Modeling study of regional severe hazes over mid-eastern China in January 2013 and its implications on pollution prevention and control. Sci. China Earth Sci., 57, 3–13. doi: 10.1007/s11430-013-4793-0
[66] Wei, W., F. G. Schmitt, Y. X. Huang, et al., 2016: The analyses of turbulence characteristics in the atmospheric surface layer using arbitrary-order Hilbert spectra. Bound.-Layer Meteor., 159, 391–406. doi: 10.1007/s10546-015-0122-9
[67] Wei, W., H. S. Zhang, F, G. Schmitt, et al., 2017: Investigation of turbulence behaviour in the stable boundary layer using arbitrary-order Hilbert spectra. Bound.-Layer Meteor., 163, 311–326. doi: 10.1007/s10546-016-0227-9
[68] Wei, W., M. Z. Wang, H. S. Zhang, et al., 2019: Diurnal characteristics of turbulent intermittency in the Taklimakan Desert. Meteor. Atmos. Phys., 131, 287–297. doi: 10.1007/s00703-017-0572-3
[69] Xia, H. X., 2006: The preliminary study of introducing the super-high chimney to the plain area of Beijing. Municipal Administration & Technology, 8, 70–72. (in Chinese) doi: 10.3969/j.issn.1008-2271.2006.02.009
[70] Yagüe, C., S. Viana, G. Maqueda, et al., 2006: Influence of stability on the flux-profile relationships for wind speed, Φm, and temperature, Φh, for the stable atmospheric boundary layer. Nonlinear Process. Geophys., 13, 185–203. doi: 10.5194/npg-13-185-2006
[71] Ye, X. X., Y. Song, X. H. Cai, et al., 2016: Study on the synoptic flow patterns and boundary layer process of the severe haze events over the North China Plain in January 2013. Atmos. Environ., 124, 129–145. doi: 10.1016/j.atmosenv.2015.06.011
[72] Yin, Z. C., and H. J. Wang, 2017: Role of atmospheric circulations in haze pollution in December 2016. Atmos. Chem. Phys., 17, 11673–11681. doi: 10.5194/acp-17-11673-2017
[73] Yu, L. D., G. F. Wang, R. J. Zhang, et al., 2013: Characterization and source apportionment of PM2.5 in an urban environment in Beijing. Aerosol Air Qual. Res., 13, 574–583. doi: 10.4209/aaqr.2012.07.0192
[74] Zhang, H. F., S. X. Wang, J. M. Hao, et al., 2016: Air pollution and control action in Beijing. J. Clean. Prod., 112, 1519–1527. doi: 10.1016/j.jclepro.2015.04.092
[75] Zhang, J. P., T. Zhu, Q. H. Zhang, et al., 2012: The impact of circulation patterns on regional transport pathways and air quality over Beijing and its surroundings. Atmos. Chem. Phys., 12, 5031–5053. doi: 10.5194/acp-12-5031-2012
[76] Zheng, G. J., F. K. Duan, H. Su, et al., 2015: Exploring the severe winter haze in Beijing: The impact of synoptic weather, regional transport and heterogeneous reactions. Atmos. Chem. Phys., 15, 2969–2983. doi: 10.5194/acp-15-2969-2015
[77] Zheng, S., A. Pozzer, C. X. Cao, et al., 2015: Long-term (2001–2012) concentrations of fine particulate matter (PM2.5) and the impact on human health in Beijing, China. Atmos. Chem. Phys., 15, 5715–5725. doi: 10.5194/acp-15-5715-2015
[78] Zhong, J. T., X. Y. Zhang, Y. Q. Wang, et al., 2017: Relative contributions of boundary-layer meteorological factors to the explosive growth of PM2.5 during the red-alert heavy pollution episodes in Beijing in December 2016. J. Meteor. Res., 31, 809–819. doi: 10.1007/s13351-017-7088-0