[1] American Meteorological Society, cited 2019: "Rain". Glossary of Meteorology. Available online at http://glossary.ametsoc.org/wiki/Rain.
[2] Andronache, C., 2003: Estimated variability of below-cloud aerosol removal by rainfall for observed aerosol size distributions. Atmos. Chem. Phys., 3, 131–143. doi: 10.5194/acp-3-131-2003
[3] Andronache, C., 2004: Precipitation removal of ultrafine aerosol particles from the atmospheric boundary layer. J. Geophys. Res. Atmos., 109, D16. doi: 10.1029/2003jd004050
[4] Andronache, C., T. Grönholm, L. Laakso, et al., 2006: Scavenging of ultrafine particles by rainfall at a boreal site: Observations and model estimations. Atmos. Chem. Phys., 6, 4739–4754. doi: 10.5194/acp-6-4739-2006
[5] Ardon-Dryer, K., Y. W. Huang, and D. J. Cziczo, 2015: Laboratory studies of collection efficiency of sub-micrometer aerosol particles by cloud droplets on a single-droplet basis. Atmos. Chem. Phys., 15, 9159–9171. doi: 10.5194/acp-15-9159-2015
[6] Atlas, D., R. C. Srivastava, and R. S. Sekhon, 1973: Doppler radar characteristics of precipitation at vertical incidence. Rev. Geophys. Space Phys., 11, 1–35. doi: 10.1029/RG011i001p00001
[7] Bae, S. Y., C. H. Jung, and Y. P. Kim, 2006: Development and evaluation of an expression for polydisperse particle scavenging coefficient for the below-cloud scavenging as a function of rain intensity using the moment method. J. Aerosol Sci., 37, 1507–1519. doi: 10.1016/j.jaerosci.2006.02.003
[8] Barmpadimos, I., C. Hueglin, J. Keller, et al., 2011: Influence of meteorology on PM10 trends and variability in Switzerland from 1991 to 2008. Atmos. Chem. Phys., 11, 1813–1835. doi: 10.5194/acp-11-1813-2011
[9] Bloemink, H. I., and E. Lanzinger, 2005: Precipitation type from the Thies disdrometer. Technical Conference on Meteorological and Environmental Instruments and Methods of Observation. Bucharest, Romania: WMO, 1–7.
[10] Byrne, M. A., and S. G. Jennings, 1993: Scavenging of sub-micrometre aerosol particles by water drops. Atmos. Environ., 27, 2099–2105. doi: 10.1016/0960-1686(93)90039-2
[11] Cai, W. J., K. Li, H. Liao, et al., 2017: Weather conditions conducive to Beijing severe haze more frequent under climate change. Nat. Climate Change, 7, 257–262. doi: 10.1038/nclimate3249
[12] Castro, A., E. Alonso-Blanco, M. González-Colino, et al., 2010: Aerosol size distribution in precipitation events in León, Spain. Atmos. Res., 96, 421–435. doi: 10.1016/j.atmosres.2010.01.014
[13] Chate, D. M., 2011: Below-thunderstorm rain scavenging of urban aerosols in the health hazardous modes. Nat. Hazards, 56, 81–91. doi: 10.1007/s11069-010-9550-5
[14] Chate, D. M., and T. S. Pranesha, 2004: Field studies of scavenging of aerosols by rain events. J. Aerosol Sci., 35, 695–706. doi: 10.1016/j.jaerosci.2003.09.007
[15] Chate, D. M., P. Murugavel, K. Ali, et al., 2011: Below-cloud rain scavenging of atmospheric aerosols for aerosol deposition models. Atmos. Res., 99, 528–536. doi: 10.1016/j.atmosres.2010.12.010
[16] Chen, B. J., J. Yang, and J. P. Pu, 2013: Statistical characteristics of raindrop size distribution in the Meiyu season observed in eastern China. J. Meteor. Soc. Japan, 91, 215–227. doi: 10.2151/jmsj.2013-208
[17] Chen, B. J., J. Wang, and D. L. Gong, 2016: Raindrop size distribution in a midlatitude continental squall line measured by Thies optical disdrometers over East China. J. Appl. Meteor. Climatol., 55, 621–634. doi: 10.1175/jamc-d-15-0127.1
[18] Chen, B. J., Z. Q. Hu, L. P. Liu, et al., 2017: Raindrop size distribution measurements at 4,500 m on the Tibetan Plateau during TIPEX-III. J. Geophys. Res. Atmos., 122, 11092–11106. doi: 10.1002/2017jd027233
[19] Chen, R. J., Z. H. Zhao, and H. D. Kan, 2013: Heavy smog and hospital visits in Beijing, China. Am. J. Resp. Crit. Care, 188, 1170–1171. doi: 10.1164/rccm.201304-0678LE
[20] Croft, B., U. Lohmann, R. V. Martin, et al., 2009: Aerosol size-dependent below-cloud scavenging by rain and snow in the ECHAM5-HAM. Atmos. Chem. Phys., 9, 4653–4675. doi: 10.5194/acp-9-4653-2009
[21] Davenport, H. M., and L. K. Peters, 1978: Field studies of atmospheric particulate concentration changes during precipitation. Atmos. Environ., 12, 997–1008. doi: 10.1016/0004-6981(78)90344-X
[22] de Moraes Frasson, R. P., L. K. da Cunha, and W. F. Krajewski, 2011: Assessment of the Thies optical disdrometer performance. Atmos. Res., 101, 237–255. doi: 10.1016/j.atmosres.2011.02.014
[23] Feng, H., 2007: A 3-mode parameterization of below-cloud scavenging of aerosols for use in atmospheric dispersion models. Atmos. Environ., 41, 6808–6822. doi: 10.1016/j.atmosenv.2007.04.046
[24] Feng, X. Y., and S. G. Wang, 2012: Influence of different wea-ther events on concentrations of particulate matter with different sizes in Lanzhou, China. J. Environ. Sci., 24, 665–674. doi: 10.1016/S1001-0742(11)60807-3
[25] Fernández-Raga, M., A. Castro, C. Palencia, et al., 2009: Rain events on 22 October 2006 in León (Spain): Drop size spectra. Atmos. Res., 93, 619–635. doi: 10.1016/j.atmosres.2008.09.035
[26] Friedrich, K., S. Higgins, F. J. Masters, et al., 2013: Articulating and stationary PARSIVEL disdrometer measurements in conditions with strong winds and heavy rainfall. J. Atmos. Ocean. Technol., 30, 2063–2080. doi: 10.1175/jtech-d-12-00254.1
[27] Greenfield, S. M., 1957: Rain scavenging of radioactive particulate matter from the atmosphere. J. Meteor., 14, 115–125. doi: 10.1175/1520-0469(1957)014<0115:rsorpm>2.0.co;2
[28] Guo, L. C., Y. H. Zhang, H. L. Lin, et al., 2016: The washout effects of rainfall on atmospheric particulate pollution in two Chinese cities. Environ. Pollut., 215, 195–202. doi: 10.1016/j.envpol.2016.05.003
[29] Guo, L. H., 2016: Haze and health. Natl. Sci. Rev., 3, 412–413. doi: 10.1093/nsr/nww071
[30] Jameson, A. R., M. L. Larsen, and A. B. Kostinski, 2015: On the variability of drop size distributions over areas. J. Atmos. Sci., 72, 1386–1397. doi: 10.1175/jas-d-14-0258.1
[31] Laakso, L., T. Grönholm, Ü. Rannik, et al., 2003: Ultrafine particle scavenging coefficients calculated from 6 years field measurements. Atmos. Environ., 37, 3605–3613. doi: 10.1016/S1352-2310(03)00326-1
[32] Ladino, L., O. Stetzer, B. Hattendorf, et al., 2011: Experimental study of collection efficiencies between submicron aerosols and cloud droplets. J. Atmos. Sci., 68, 1853–1864. doi: 10.1175/jas-d-11-012.1
[33] Lai, K.-Y., N. Dayan, and M. Kerker, 1978: Scavenging of aerosol particles by a falling water drop. J. Atmos. Sci., 35, 674–682. doi: 10.1175/1520-0469(1978)035<0674:soapba>2.0.co;2
[34] Lemaitre, P., A. Querel, M. Monier, et al., 2017: Experimental evidence of the rear capture of aerosol particles by raindrops. Atmos. Chem. Phys., 17, 4159–4176. doi: 10.5194/acp-17-4159-2017
[35] Liao, H., W. Y. Chang, and Y. Yang, 2015: Climatic effects of air pollutants over China: A review. Adv. Atmos. Sci., 32, 115–139. doi: 10.1007/s00376-014-0013-x
[36] Luan, T., X. L. Guo, L. J. Guo, et al., 2018: Quantifying the relationship between PM2.5 concentration, visibility and planetary boundary layer height for long-lasting haze and fog–haze mixed events in Beijing. Atmos. Chem. Phys., 18, 203–225. doi: 10.5194/acp-18-203-2018
[37] Maria, S. F., and L. M. Russell, 2005: Organic and inorganic aerosol below-cloud scavenging by suburban New Jersey precipitation. Environ. Sci. Technol., 39, 4793–4800. doi: 10.1021/es0491679
[38] Olszowski, T., 2016: Changes in PM10 concentration due to large-scale rainfall. Arab. J. Geosci., 9, 160. doi: 10.1007/s12517-015-2163-2
[39] Pruppacher, H. R., and J. D. Klett, 1997: Microphysics of Clouds and Precipitation. Kluwer Academic, Dordrecht, 720–730.
[40] Qian, Y., D. P. Kaiser, L. R. Leung, et al., 2006: More frequent cloud-free sky and less surface solar radiation in China from 1955 to 2000. Geophys. Res. Lett., 33, L01812. doi: 10.1029/2005gl024586
[41] Quérel, A., P. Lemaitre, M. Monier, et al., 2014a: An experiment to measure raindrop collection efficiencies: Influence of rear capture. Atmos. Meas. Tech., 7, 1321–1330. doi: 10.5194/amt-7-1321-2014
[42] Quérel, A., M. Monier, A. I. Flossmann, et al., 2014b: The importance of new collection efficiency values including the effect of rear capture for the below-cloud scavenging of aerosol particles. Atmos. Res., 142, 57–66. doi: 10.1016/j.atmosres.2013.06.008
[43] Seinfeld, J. H., and S. N. Pandis, 2006: Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. Wiley & Sons, Hoboken, NJ, 932 pp.
[44] Tie, X. X., D. Wu, and G. Brasseur, 2009: Lung cancer mortality and exposure to atmospheric aerosol particles in Guangzhou, China. Atmos. Environ., 43, 2375–2377. doi: 10.1016/j.atmosenv.2009.01.036
[45] Tinsley, B. A., 2010: Electric charge modulation of aerosol scavenging in clouds: Rate coefficients with Monte Carlo simulation of diffusion. J. Geophys. Res. Atmos., 115, D23211. doi: 10.1029/2010jd014580
[46] Tinsley, B. A., R. P. Rohrbaugh, and M. Hei, 2001: Electroscavenging in clouds with broad droplet size distributions and weak electrification. Atmos. Res., 59-60, 115–135. doi: 10.1016/s0169-8095(01)00112-0
[47] Tinsley, B. A., L. M. Zhou, and A. Plemmons, 2006: Changes in scavenging of particles by droplets due to weak electrification in clouds. Atmos. Res., 79, 266–295. doi: 10.1016/j.atmosres.2005.06.004
[48] Wang, P. K., and H. R. Pruppacher, 1977: An experimental determination of the efficiency with which aerosol particles are collected by water drops in subsaturated air. J. Atmos. Sci., 34, 1664–1669. doi: 10.1175/1520-0469(1977)034<1664:aedote>2.0.co;2
[49] Wang, X., L. Zhang, and M. D. Moran, 2010: Uncertainty assessment of current size-resolved parameterizations for below-cloud particle scavenging by rain. Atmos. Chem. Phys., 10, 5685–5705. doi: 10.5194/acp-10-5685-2010
[50] Wang, X., L. Zhang, and M. D. Moran, 2011: On the discrepancies between theoretical and measured below-cloud particle scavenging coefficients for rain—a numerical investigation using a detailed one-dimensional cloud microphysics model. Atmos. Chem. Phys., 11, 11859–11866. doi: 10.5194/acp-11-11859-2011
[51] Xu, X. D., X. L. Guo, T. L. Zhao, et al., 2017: Are precipitation anomalies associated with aerosol variations over eastern China? Atmos. Chem. Phys., 17, 8011–8019. doi: 10.5194/acp-17-8011-2017
[52] Yang, Y., H. Liao, and S. J. Lou, 2016: Increase in winter haze over eastern China in recent decades: Roles of variations in meteorological parameters and anthropogenic emissions. J. Geophys. Res. Atmos., 121, 13050–13065. doi: 10.1002/2016JD025136
[53] Zhang, L. M., D. V. Michelangeli, and P. A. Taylor, 2004: Numerical studies of aerosol scavenging by low-level, warm stratiform clouds and precipitation. Atmos. Environ., 38, 4653–4665. doi: 10.1016/j.atmosenv.2004.05.042
[54] Zhang, L. M., D. V. Michelangeli, and P. A. Taylor, 2006: Influence of aerosol concentration on precipitation formation in low-level, warm stratiform clouds. J. Aerosol Sci., 37, 203–217. doi: 10.1016/j.jaerosci.2005.04.002
[55] Zhang, L. M., X. Wang, M. D. Moran, et al., 2013: Review and uncertainty assessment of size-resolved scavenging coefficient formulations for below-cloud snow scavenging of atmospheric aerosols. Atmos. Chem. Phys., 13, 10005–10025. doi: 10.5194/acp-13-10005-2013
[56] Zhang, Y. L., and F. Cao, 2015: Fine particulate matter (PM2.5) in China at a city level. Sci. Rep., 5, 14884. doi: 10.1038/srep14884
[57] Zhao, S. P., Y. Yu, J. J. He, et al., 2015: Below-cloud scavenging of aerosol particles by precipitation in a typical valley city, northwestern China. Atmos. Environ., 102, 70–78. doi: 10.1016/j.atmosenv.2014.11.051
[58] Zikova, N., and V. Zdimal, 2016: Precipitation scavenging of aerosol particles at a rural site in the Czech Republic. Tellus B, 68, 27343. doi: 10.3402/tellusb.v68.27343