[1] An, S.-I., and J. Choi, 2013: Inverse relationship between the equatorial eastern Pacific annual-cycle and ENSO amplitudes in a coupled general circulation model. Climate Dyn., 40, 663–675. doi: 10.1007/s00382-012-1403-3
[2] Bellenger, H., E. Guilyardi, J. Leloup, et al., 2014: ENSO representation in climate models: From CMIP3 to CMIP5. Climate Dyn., 42, 1999–2018. doi: 10.1007/s00382-013-1783-z
[3] Chen, L., and Y. Q. Yu, 2014: Preliminary evaluations of ENSO-related cloud and water vapor feedbacks in FGOALS. Flexible Global Ocean–Atmosphere–Land System Model, T. J. Zhou, Y. Q. Yu, Y. M. Liu, et al., Eds., Springer, Berlin, Heidelberg, 189–197, doi: 10.1007/978-3-642-41801-3_23.
[4] Chen, L., Y. Q. Yu, and D.-Z. Sun, 2013: Cloud and water vapor feedbacks to the El Niño warming: Are they still biased in CMIP5 models? J. Climate, 26, 4947–4961. doi: 10.1175/JCLI-D-12-00575.1
[5] Chen, L., Y. Q. Yu, and W. P. Zheng, 2016: Improved ENSO simulation from climate system model FGOALS-g1.0 to FGOALS-g2.0. Climate Dyn., 47, 2617–2634. doi: 10.1007/s00382-016-2988-8
[6] Chen, L., D.-Z. Sun, L. Wang, et al., 2018a: A further study on the simulation of cloud–radiative feedbacks in the ENSO cycle in the tropical Pacific with a focus on the asymmetry. Asia–Pacific J. Atmos. Sci., . doi: 10.1007/s13143-018-0064-5
[7] Chen, L., L. Wang, T. Li, et al., 2018b: Contrasting cloud radiative feedbacks during warm pool and cold tongue El Niños. SOLA, . doi: 10.2151/sola.2018-022
[8] Dai, Y. J., X. B. Zeng, R. E. Dickinson, et al., 2003: The common land model. Bull. Amer. Meteor. Soc., 84, 1013–1024. doi: 10.1175/BAMS-84-8-1013
[9] Ding, R. Q., J. P. Li, and Y.-H. Tseng, 2015: The impact of South Pacific extratropical forcing on ENSO and comparisons with the North Pacific. Climate Dyn., 44, 2017–2034. doi: 10.1007/s00382-014-2303-5
[10] Dong, L., T. J. Zhou, and X. L. Chen, 2014: Changes of Pacific decadal variability in the twentieth century driven by internal variability, greenhouse gases, and aerosols. Geophys. Res. Lett., 41, 8570–8577. doi: 10.1002/2014GL062269
[11] Duan, W. S., M. Mu, and B. Wang, 2004: Conditional nonlinear optimal perturbations as the optimal precursors for El Niño–Southern Oscillation events. J. Geophys. Res. Atmos., 109, D23105. doi: 10.1029/2004JD004756
[12] Ferrett, S., M. Collins, and H.-L. Ren, 2017: Understanding bias in the evaporative damping of El Niño–Southern Oscillation events in CMIP5 models. J. Climate, 30, 6351–6370. doi: 10.1175/JCLI-D-16-0748.1
[13] Ferrett, S., M. Collins, and H.-L. Ren, 2018: Diagnosing relationships between mean state biases and El Niño shortwave feedback in CMIP5 models. J. Climate, 31, 1315–1335. doi: 10.1175/JCLI-D-17-0331.1
[14] Giese, B. S., and S. Ray, 2011: El Niño variability in simple ocean data assimilation (SODA), 1871–2008. J. Geophys. Res. Oceans, 116, C02024. doi: 10.1029/2010JC006695
[15] Graham, N. E., and T. P. Barnett, 1987: Sea surface temperature, surface wind divergence, and convection over tropical oceans. Science, 238, 657–659. doi: 10.1126/science.238.4827.657
[16] Griffies, S. M., M. J. Harrison, R. C. Pacanowski, et al., 2004: A Technical Guide To MOM4. GFDL Ocean Group Technical Report No. 5. NOAA/Geophysical Fluid Dynamics Laboratory, 291 pp.
[17] Guilyardi, E., A. Wittenberg, A. Fedorov, et al., 2009: Understanding El Niño in ocean–atmosphere general circulation models: Progress and challenges. Bull. Amer. Meteor. Soc., 90, 325–340. doi: 10.1175/2008BAMS2387.1
[18] Hua, L. J., and L. Chen, 2019: ENSO asymmetry in the CAMS-CSM. Asia–Pacific J. Atmos. Sci., . doi: 10.1007/s13143-018-00102-9
[19] Hua, L. J., L. Chen, X. Y. Rong, et al., 2018: Impact of atmospheric model resolution on simulation of ENSO feedback processes: A coupled model study. Climate Dyn., 51, 3077–3092. doi: 10.1007/s00382-017-4066-2
[20] Hua, L. J., D.-Z. Sun, and Y. Q. Yu, 2019: Why do we have El Niño: Quantifying a diabatic and nonlinear perspective using observations. Climate Dyn., . doi: 10.1007/s00382-018-4541-4
[21] Im, S.-H., S.-I. An, S. T. Kim, et al., 2015: Feedback processes responsible for El Niño–La Niña amplitude asymmetry. Geophys. Res. Lett., 42, 5556–5563. doi: 10.1002/2015GL064853
[22] Jin, F.-F., S. T. Kim, and L. Bejarano, 2006: A coupled-stability index for ENSO. Geophys. Res. Lett., 33, L23708. doi: 10.1029/2006GL027221
[23] Kim, S. T., and F.-F. Jin, 2011a: An ENSO stability analysis. Part I: Results from a hybrid coupled model. Climate Dyn., 36, 1593–1607. doi: 10.1007/s00382-010-0796-0
[24] Kim, S. T., and F.-F. Jin, 2011b: An ENSO stability analysis. Part II: Results from the twentieth and twenty-first century simulations of the CMIP3 models. Climate Dyn., 36, 1609–1627. doi: 10.1007/s00382-010-0872-5
[25] Kim, S., W. J. Ca, F.-F. Jin, et al., 2014: ENSO stability in coupled climate models and its association with mean state. Climate Dyn., 42, 3313–3321. doi: 10.1007/s00382-013-1833-6
[26] Larkin, N. K., and D. E. Harrison, 2005: Global seasonal temperature and precipitation anomalies during El Niño autumn and winter. Geophys. Res. Lett., 32, L16705. doi: 10.1029/2005GL022860
[27] Li, L. J., B. Wang, and G. J. Zhang, 2014: The role of nonconvective condensation processes in response of surface shortwave cloud radiative forcing to El Niño warming. J. Climate, 27, 6721–6736. doi: 10.1175/JCLI-D-13-00632.1
[28] Li, L. J., B. Wang, and G. J. Zhang, 2015: The role of moist processes in shortwave radiative feedback during ENSO in the CMIP5 models. J. Climate, 28, 9892–9908. doi: 10.1175/JCLI-D-15-0276.1
[29] Lloyd, J., E. Guilyardi, and H. Weller, 2012: The role of atmosphere feedbacks during ENSO in the CMIP3 models. Part III: The shortwave flux feedback. J. Climate, 25, 4275–4293. doi: 10.1175/JCLI-D-11-00178.1
[30] Lu, B., F.-F. Jin, and H.-L. Ren, 2018: A coupled dynamic index for ENSO periodicity. J. Climate, 31, 2361–2376. doi: 10.1175/JCLI-D-17-0466.1
[31] McPhaden, M. J., S. E. Zebiak, and M. H. Glantz, 2006: ENSO as an integrating concept in earth science. Science, 314, 1740–1745. doi: 10.1126/science.1132588
[32] Park, J. H., S.-I. An, and J.-S. Kug, 2017: Interannual variability of western North Pacific SST anomalies and its impact on North Pacific and North America. Climate Dyn., 49, 3787–3798. doi: 10.1007/s00382-017-3538-8
[33] Rayner, N. A., D. E. Parker, E. B. Horton, et al., 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. Atmos., 108, 4407. doi: 10.1029/2002jd002670
[34] Ren, H.-L., and F.-F. Jin, 2011: Niño indices for two types of ENSO. Geophys. Res. Lett., 38, L04704. doi: 10.1029/2010GL046031
[35] Ren, H.-L., and F.-F. Jin, 2013: Recharge oscillator mechanisms in two types of ENSO. J. Climate, 26, 6506–6523. doi: 10.1175/JCLI-D-12-00601.1
[36] Roeckner, E., G. Bäuml, L. Bonaventura, et al., 2003: The Atmospheric General Circulation Model ECHAM5, Part I: Model Description. Max-Planck-Institute for Meteorology, Rep. No. 349, Hamburg, Germany, 127 pp.
[37] Rong, X. Y., J. Li, H. M. Chen, et al., 2018: The CAMS Climate System Model and a basic evaluation of its climatology and climate variability simulation. J. Meteor. Res., 32, 839–861. doi: 10.1007/s13351-018-8058-x
[38] Sun, D.-Z., Y. Q. Yu, and T. Zhang, 2009: Tropical water vapor and cloud feedbacks in climate models: A further assessment using coupled simulations. J. Climate, 22, 1287–1304. doi: 10.1175/2008JCLI2267.1
[39] Sun, Y., F. Wang, and D.-Z. Sun, 2016: Weak ENSO asymmetry due to weak nonlinear air–sea interaction in CMIP5 climate models. Adv. Atmos. Sci., 33, 352–364. doi: 10.1007/s00376-015-5018-6
[40] Timmermann, A., S.-I. An, J.-S. Kug, et al., 2018: El Niño–Southern Oscillation complexity. Nature, 559, 535–545. doi: 10.1038/s41586-018-0252-6
[41] Uppala, S. M., P. W. KÅllberg, A. J. Simmons, et al., 2005: The ERA-40 re-analysis. Quart. J. Roy. Meteor. Soc., 131, 2961–3012. doi: 10.1256/qj.04.176
[42] Wang, L., and L. Chen, 2016: Interannual variation of convectively-coupled equatorial waves and their association with environmental factors. Dyn. Atmos. Oceans, 76, 116–126. doi: 10.1016/j.dynatmoce.2016.10.004
[43] Wang, L., and L. Chen, 2017a: Effect of basic state on seasonal variation of convectively coupled Rossby wave. Dyn. Atmos. Oceans, 77, 54–63. doi: 10.1016/j.dynatmoce.2016.11.002
[44] Wang, L., and L. Chen, 2017b: Interannual variation of the Asian–Pacific oscillation. Dyn. Atmos. Oceans, 77, 17–25. doi: 10.1016/j.dynatmoce.2016.10.009
[45] Winton, M., 2000: A reformulated three-layer sea ice model. J. Atmos. Oceanic Technol., 17, 525–531. doi: 10.1175/1520-0426(2000)017<0525:ARTLSI>2.0.CO;2
[46] Xie, P. P., and P. A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78, 2539–2558. doi: 10.1175/1520-0477(1997)078<2539:GPAYMA>2.0.CO;2
[47] Yu, L. S., X. Z. Jin, and R. A. Weller, 2008: Multidecade Global Flux Datasets from the Objectively Analyzed Air–Sea Fluxes (OAFlux) Project: Latent and Sensible Heat Fluxes, Ocean Evaporation, and Related Surface Meteorological Variables. OAFlux Project Technical Report (OA-2008-01), Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, 64 pp.
[48] Zhang, Y. C., W. B. Rossow, A. A. Lacis, et al., 2004: Calculation of radiative fluxes from the surface to top of atmosphere based on ISCCP and other global data sets: Refinements of the radiative transfer model and the input data. J. Geophys. Res. Atmos., 109, D19105. doi: 10.1029/2003JD004457
[49] Zheng, F., L. S. Feng, and J. Zhu, 2015: An incursion of off-equatorial subsurface cold water and its role in triggering the " double dip” La Niña event of 2011. Adv. Atmos. Sci., 32, 731–742. doi: 10.1007/s00376-014-4080-9
[50] Zhou, T. J., B. Wu, and L. Dong, 2014: Advances in research of ENSO changes and the associated impacts on Asian–Pacific climate. Asia–Pacific J. Atmos. Sci., 50, 405–422. doi: 10.1007/s13143-014-0043-4