[1] Abkar, M., and F. Porté-Agel, 2013: The effect of free-atmosphere stratification on boundary-layer flow and power output from very large wind farms. Energies, 6, 2338–2361. doi: 10.3390/en6052338
[2] Alfredo, P. D., 2009: Sensing the wind profile. Ph.D. dissertation, Risø DTU, Roskilde, Denmark, 80 pp.
[3] Banta, R. M., Y. L. Pichugina, N. D. Kelley, et al., 2013: Wind energy meteorology: Insight into wind properties in the turbine-rotor layer of the atmosphere from high-resolution Doppler Lidar. Bull. Amer. Meteor. Soc., 94, 883–902. doi: 10.1175/BAMS-D-11-00057.1
[4] China Water Conservancy and Hydropower Engineering Consulting Company, 2004: GB/T18710-2002 Methodology of wind energy resource assessment for wind farm. Standards Press of China, Beijing. (in Chinese)
[5] Foken, T., 2008: Micrometeorology. Springer, Heidelberg, 109–112.
[6] General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, China National Standardization Management Committee, 2012: GB/T 18451.1-2012 Wind turbine generator systems—design requirements. Standards Press of China, Beijing. (in Chinese)
[7] Gong, X., R. Zhu, G. Z. Fan, et al., 2014: Observational study of the vertical wind profile in the Inner Mongolia grassland near-surface. Acta Meteor. Sinica, 72, 711–722. (in Chinese) doi: 10.11676/qxxb2014.058
[8] Gryining, S. E., E. Batchvarova, B. Brummer, et al., 2007: On the extension of the wind profile over homogeneous terrain beyond the surface boundary layer. Bound.-Layer Meteor., 124, 251–268. doi: 10.1007/s10546-007-9166-9
[9] Höbbel, T., K. Thiele, and M. Clobes, 2018: Wind turbulence parameters from three dimensional full-scale measurements at 344 m high guyed mast site Gartow 2. J. Wind Eng. Ind. Aerodyn., 172, 341–350. doi: 10.1016/j.jweia.2017.11.001
[10] Højstrup, J., 1993: Statistical data screening procedure. Meas. Sci. Technol., 4, 153–157. doi: 10.1088/0957-0233/4/2/003
[11] Hu, X. M., P. M. Klein, and M. Xue, 2013: Evaluation of the updated YSU planetary boundary layer scheme within WRF for wind resource and air quality assessments. J. Geophys. Res. Atmos., 118, 10490–10505. doi: 10.1002/jgrd.50823
[12] Huang, L. H., L. L. Song, G. Li, et al., 2016: Applicability of estimation methods of IEC WTGS selecting parameters in China. Meteor. Mon., 42, 1522–1530. (in Chinese) doi: 10.7519/j.issn.1000-0526.2016.12.010
[13] IEC, 2005: IEC 61400-1 Wind turbines—Part 1: Design requirement. 3rd Ed., IEC. Available at https://webstore.iec.ch/publication/5426.
[14] Irwin, J. S., 1979: A theoretical variation of the wind profile power-law exponent as a function of surface roughness and stability. Atmos. Environ., 13, 191–194. doi: 10.1016/0004-6981(79)90260-9
[15] Kaimal, J. C., 1973: Turbulenece spectra, length scales and structure parameters in the stable surface layer. Bound.-Layer Meteor., 4, 289–309. doi: 10.1007/BF02265239
[16] Kaimal, J. C., and J. C. Wyngaard, 1990: The Kansas and Minnesota experiments. Bound.-Layer Meteor., 50, 31–47. doi: 10.1007/BF00120517
[17] Kaimal, J. C., and J. J. Finnigan, 1994: Atmospheric Boundary Layer Flows: Their Structure and Measurement. Oxford University Press, Oxford, 236–237.
[18] Kaimal, J. C., J. C. Wyngaard, Y. Izumi, et al., 1972: Spectral characteristics of surface-layer turbulence. Quart. J. Roy. Meteor. Soc., 98, 563–598. doi: 10.1002/qj.49709841707
[19] Kalvig, S., O. T. Gudmestad, and N. Winther, 2014: Exploring the gap between ‘best knowledge’ and ‘best practice’ in boundary layer meteorology for offshore wind energy. Wind Energy, 17, 161–171. doi: 10.1002/we.1572
[20] Ma, Y. F., J. H. Song, and C. X. Gao, 2015: Distribution of maximum wind and extreme wind speeds in eastern Inner Mongolia Power Giad. Meteor. Sci. Technol., 43, 163–167. (in Chinese) doi: 10.3969/j.issn.1671-6345.2015.01.027
[21] Mann, J., 1994: The spatial structure of neutral atmospheric surface-layer turbulence. J. Fluid Mech., 273, 141–168. doi: 10.1017/S0022112094001886
[22] Mann, J., 1998: Wind field simulation. Prob. Eng. Mech., 4, 269–282. doi: 10.1016/S0266-8920(97)00036-2
[23] Miao, Y. C., X. M. Hu, S. H. Liu, et al., 2015: Seasonal variation of local atmospheric circulations and boundary layer structure in the Beijing–Tianjin–Hebei region and implications for air quality. J. Adv. Model. Earth Syst., 7, 1602–1626. doi: 10.1002/2015MS000522
[24] Monin, A. S., and A. M. Obukhov, 1954: Basic laws of turbulent mixing in the surface layer of the atmosphere. Tr. Akad. Nauk SSSR Geophiz. Inst., 24, 163–187.
[25] National Technical Committee for Wind Machinery Standardization, 2001: JB/T 10300-2001 Wind turbine generaator system—desigen reguirements. Standards Press of China, Beijing. (in Chinese)
[26] Niu, S. J., L. J. Zhao, C. S. Lu, et al., 2012: Observational evidence for the Monin–Obukhov similarity under all stability conditions. Adv. Atmos. Sci., 29, 285–294. doi: 10.1007/s00376-011-1112-6
[27] Peña, A., R. Floors, A. Sathe, et al., 2016: Ten years of boundary-layer and wind-power meteorology at Høvsøre, Denmark. Bound.-Layer Meteor., 158, 1–26. doi: 10.1007/s10546-015-0079-8
[28] Petersen, E. L., N. G. Mortensen, L. Landberg, et al., 1998: Wind power meteorology. Part I: Climate and turbulence. Wind Energy, 1, 2–22. doi: 10.1002/(SICI)1099-1824(199809)1:1<2::AID-WE15>3.0.CO;2-Y
[29] Rajewski, D. A., E. S. Takle, J. K. Lundquist, et al., 2013: Crop wind energy experiment (CWEX): Observations of surface-layer, boundary layer, and mesoscale interactions with a wind farm. Bull. Amer. Meteor. Soc., 94, 655–672. doi: 10.1175/BAMS-D-11-00240.1
[30] Rozenn W., C. S. Michael, L. J. Torben, et al., 2010: Simulation of Shear and Turbulence Impact on Wind Turbine Power Performance. Risø-R-1722(EN), DTU Wind Energy, Copenhagen, 55 pp.
[31] Sheng, P. X., J. T. Mao, J. G., Li, et al., 2003: Atmospheric Physics. Peking University Press, Beijing, 225–227. Available at https://www.scirp.org/journal/PaperInformation.aspx?paperID=45196. (in Chinese)
[32] Smedman-Högström, A. S., and U. Högström, 1978: A practical method for determining wind frequency distributions for the lowest 200 m from routine meteorological data. J. Appl. Meteor., 17, 942–954. doi: 10.1175/1520-0450(1978)017<0942:APMFDW>2.0.CO;2
[33] Song, L. L., H. Q. Mao, H. H. Huang, et al., 2005: Analysis on boundary layer turbulent features of landfalling typhoon. Acta Meteor. Sinica, 63, 915–921. (in Chinese) doi: 10.3321/j.issn:0577-6619.2005.06.008
[34] Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Kluwer Academic Publishers, London, 670 pp
[35] van den Berg, G. P., 2008: Wind turbine power and sound in relation to atmospheric stability. Wind Energy, 11, 151–169. doi: 10.1002/we.240
[36] Vickers, D., and L. Mahrt, 1997: Quality control and flux sampling problems for tower and aircraft data. J. Atmos. Oceanic Technol., 14, 512–526. doi: 10.1175/1520-0426(1997)014<0512:QCAFSP>2.0.CO;2
[37] von Kármán, T., 1948: Progress in the statistical theory of turbulence. Proc. Natl. Acad. Sci. USA, 34, 530–539. doi: 10.1073/pnas.34.11.530
[38] Xue, N. X., 2008: Application of MATLAB in Digital Signal Processing. 2nd Ed., Tsinghua University Press, Beijing, 285–287. (in Chinese)
[39] Zhang, S. Y., and F. Hu, 2017: A study on effects of boundary layer meteorology to wind turbines’ power performance. Renewable Energy Resources, 35, 427–436. (in Chinese) doi: 10.13941/j.cnki.21-1469/tk.2017.03.016
[40] Zoumakis, N. M., 1993: The dependence of the power-law exponent on surface roughness and stability in a neutrally and stably stratified surface boundary layer. Atmosfera, 6, 79–83.