[1] Annamalai, H., S.-P. Xie, J. P. McCreary, et al, 2005: Impact of Indian Ocean sea surface temperature on developing El Niño. J. Climate, 18, 302–319. doi: 10.1175/JCLI-3268.1
[2] Brasnett, B., and D. S. Colan, 2016: Assimilating retrievals of sea surface temperature from VIIRS and AMSR2. J. Atmos. Oceanic Technol., 33, 361–375. doi: 10.1175/JTECH-D-15-0093.1
[3] Chambers, D. P., B. D. Tapley, and R. H. Stewart, 1999: Anomalous warming in the Indian Ocean coincident with El Niño. J. Geophys. Res. Oceans, 104, 3035–3047. doi: 10.1029/1998JC900085
[4] Ding, Y. H., Y. Y. Liu, and Z.-Z. Hu, 2021: The record-breaking meiyu in 2020 and associated atmospheric circulation and tropical SST anomalies. Adv. Atmos. Sci. . doi: 10.1007/s00376-021-0361-2
[5] Donlon, C. J., M. Martin, J. Stark, et al., 2012: The Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA) system. Remote Sens. Environ., 116, 140–158. doi: 10.1016/j.rse.2010.10.017
[6] Du, Y., L. Yang, and S. P. Xie, 2011: Tropical Indian Ocean influence on Northwest Pacific tropical cyclones in summer following strong El Niño. J. Climate, 24, 315–322. doi: 10.1175/2010JCLI3890.1
[7] Enfield, D. B., A. M. Mestas-Nuñez, D. A., Mayer, et al., 1999: How ubiquitous is the dipole relationship in tropical Atlantic sea surface temperatures? J. Geophys. Res. Oceans, 104, 7841–7848. doi: 10.1029/1998JC900109
[8] EPA (U.S. Environmental Protection Agency), 2014: Climate Change Indicators in the United States, 2014. Third edition. EPA 430-R-14-004, 112 pp. Available at www.epa.gov/climatechange/indicators. Accessed on 11 August 2021.
[9] GCOS (Global Climate Observing System), 2011: Systematic Observation Requirements for Satellite-Based Data Products for Climate. 2011 update, GCOS-154. World Meteorological Organization, Geneva, Switzerland, 103 pp.
[10] Guo, Y. J., and Y. Q. Ni, 1998: Effects of the tropical Pacific convective activities on China’s winter monsoon. Meteor. Mon., 24, 3–7. (in Chinese)
[11] Han, Z., S. L. Li, and M. Mu, 2011: The role of warm North Atlantic SST in the formation of positive height anomalies over the Ural Mountains during January 2008. Adv. Atmos. Sci., 28, 246–256. doi: 10.1007/s00376-010-0069-1
[12] Hu, Z.-Z., R. G. Wu, J. L. Kinter III, et al., 2005: Connection of summer rainfall variations in South and East Asia: role of El Niño–southern oscillation. Int. J. Climatol., 25, 1279–1289. doi: 10.1002/joc.1159
[13] Hu, Z.-Z., A. Kumar, B. Jha, et al., 2012: An analysis of warm pool and cold tongue El Niños: air–sea coupling processes, global influences, and recent trends. Climate Dyn., 38, 2017–2035. doi: 10.1007/s00382-011-1224-9
[14] Hu, Z.-Z., A. Kumar, J. S. Zhu, et al., 2019: On the challenge for ENSO cycle prediction: An example from NCEP Climate Forecast System, version 2. J. Climate, 32, 183–194. doi: 10.1175/JCLI-D-18-0285.1
[15] Hu, Z.-Z., A. Kumar, B. Jha, et al., 2020: How much of monthly mean precipitation variability over global land is associated with SST anomalies? Climate Dyn., 54, 701–712. doi: 10.1007/s00382-019-05023-5
[16] Huang, B. Y., M. L’Heureux, J. Lawrimore, et al., 2013: Why did large differences arise in the sea surface temperature datasets across the tropical Pacific during 2012? J. Atmos. Oceanic Technol., 30, 2944–2953. doi: 10.1175/JTECH-D-13-00034.1
[17] Huang, B. Y., M. L’Heureux, Z.-Z. Hu, et al., 2016: Ranking the strongest ENSO events while incorporating SST uncertainty. Geophys. Res. Lett., 43, 9165–9172. doi: 10.1002/2016GL070888
[18] Huang, B. Y., C. Y. Liu, V. Banzon, et al., 2021: Improvements of the Daily Optimum Interpolation Sea Surface Temperature (DOISST) version 2.1. J. Climate, 34, 2923–2939. doi: 10.1175/JCLI-D-20-0166.1
[19] Huang, G., and K. M. Hu, 2008: Impact of North Indian Ocean SSTA on Northwest Pacific lower layer anomalous anticy-clone in summer. J. Nanjing Inst. Meteor., 31, 749–757. (in Chinese) doi: 10.3969/j.issn.1674-7097.2008.06.001
[20] Ignatov, A., 2010: GOES-R Advanced Baseline Imager (ABI) Algorithm Theoretical Basis Document for Sea Surface Temperature. NOAA/NESDIS/STAR, 90 pp. Available at https://www.star.nesdis.noaa.gov/goesr/documents/ATBDs/Baseline/ATBD_GOES-R_SST-v2.0_Aug2010.pdf. Accessed on 11 August 2021.
[21] IPCC, 2018: Special Report: Global Warming of 1.5°C. IPCC, 630 pp. Available at https://www.ipcc.ch/site/assets/uploads/sites/2/2019/06/SR15_Full_Report_Low_Res.pdf. Accessed on 11 August 2021.
[22] Izumo, T., C. D. B. Montégut, J. J. Luo, et al., 2008: The role of the western Arabian Sea upwelling in Indian monsoon rainfall variability. J. Climate, 21, 5603–5623. doi: 10.1175/2008JCLI2158.1
[23] Kanamitsu, M., W. Ebisuzaki, J. Woollen, et al., 2002: NCEP–DOE AMIP-II reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 1631–1644. doi: 10.1175/BAMS-83-11-1631
[24] Kao, H.-Y., and J.-Y. Yu, 2009: Contrasting eastern-Pacific and central-Pacific types of ENSO. J. Climate, 22, 615–632. doi: 10.1175/2008JCLI2309.1
[25] Liu, Y. Y., Y. H. Ding, H. Gao, et al., 2013: Tropospheric biennial oscillation of the western Pacific subtropical high and its relationships with the tropical SST and atmospheric circulation anomalies. Chinese Sci. Bull., 58, 3664–3672. doi: 10.1007/s11434-013-5854-7
[26] Liu, Y. Y., Z.-Z. Hu, A. Kumar, et al., 2015: Tropospheric bien-nial oscillation of summer monsoon rainfall over East Asia and its association with ENSO. Climate Dyn., 45, 1747–1759. doi: 10.1007/s00382-014-2429-5
[27] Liu, Y. Y., Z. J. Ke, and Y. H. Ding, 2019a: Predictability of East Asian summer monsoon in seasonal climate forecast models. Int. J. Climatol., 39, 5688–5701, doi: 10.1002/joc.6180.
[28] Liu, Y. Y., P. Liang, and Y. Sun, 2019b: The Asian Summer Monsoon: Characteristics, Variability, Teleconnections and Projection. Elsevier, Cambridge, 237 pp, doi: 10.1016/C2017-0-04074-0.
[29] National Research Council, 2010: Assessment of Intraseasonal to Interannual Climate Prediction and Predictability. National Academies Press, Washington, 192 pp.
[30] Nitta, T., and Z.-Z. Hu, 1996: Summer climate variability in China and its association with 500 hPa height and tropical convection. J. Meteor. Soc. Japan, 74, 425–445. doi: 10.2151/jmsj1965.74.4_425
[31] Ohring, G., B. Wielicki, R. Spencer, et al., 2005: Satellite instrument calibration for measuring global climate change: Report of a workshop. Bull. Amer. Meteor. Soc., 86, 1303–1314. doi: 10.1175/BAMS-86-9-1303
[32] Reynolds, R. W., N. A. Rayner, T. M. Smith, et al., 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15, 1609–1625. doi: 10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2
[33] Reynolds, R. W., T. M. Smith, C. Y. Liu, et al., 2007: Daily high-resolution-blended analyses for sea surface temperature. J. Climate, 20, 5473–5496. doi: 10.1175/2007JCLI1824.1
[34] Saji, N. H., B. N. Goswami, P. N. Vinayachandran, et al., 1999: A dipole mode in the tropical Indian Ocean. Nature, 401, 360–363. doi: 10.1038/43854
[35] Wang, B., R. G. Wu, and X. H. Fu, 2000: Pacific–East Asian teleconnection: How does ENSO affect East Asian climate? J. Climate, 13, 1517–1536. doi: 10.1175/1520-0442(2000)013<1517:PEATHD>2.0.CO;2
[36] Wang, S. J., P. Cui, M. N. Ran, et al., 2014a: Algorithm improvement and quality validation of operational FY3A/VIRR SST product. Meteor. Sci. Technol., 42, 748–752. (in Chinese) doi: 10.3969/j.issn.1671-6345.2014.05.004
[37] Wang, S. J., P. Cui, P. Zhang, et al., 2014b: The improvement of FY-3B/VIRR SST algorithm and its accuracy. J. Appl. Meteor. Sci., 25, 701–710. (in Chinese)
[38] Wang, S. J., P. Cui, P. Zhang, et al., 2014c: FY-3C/VIRR SST algorithm and cal/val activities at NSMC/CMA. Proc. Volume 9261, Ocean Remote Sensing and Monitoring from Space, SPIE, Beijing, 92610G, doi: 10.1117/12.2068773.
[39] Wang, S. J., P. Cui, P. Zhang, et al., 2020: FY-3C/VIRR sea surface temperature products and quality validation. J. Appl. Meteor. Sci., 31, 729–739. (in Chinese) doi: 10.11898/1001-7313.20200608
[40] Wu, G. X., P. Liu, Y. M. Liu, et al., 2000: Impacts of the sea surface temperature anomaly in the Indian Ocean on the subtropical anticyclone over the western Pacific—Two-stage thermal adaptation in the atmosphere. Acta Meteor. Sinica, 58, 513–522. (in Chinese) doi: 10.11676/qxxb2000.054
[41] Wu, R. G., Z.-Z. Hu, and B. P. Kirtman, 2003: Evolution of ENSO-related rainfall anomalies in East Asia. J. Climate, 16, 3742–3758. doi: 10.1175/1520-0442(2003)016<3742:EOERAI>2.0.CO;2
[42] Wu, R. G., and B. P. Kirtman, 2004: Understanding the impacts of the Indian Ocean on ENSO variability in a coupled GCM. J. Climate, 17, 4019–4031. doi: 10.1175/1520-0442(2004)017<4019:UTIOTI>2.0.CO;2
[43] Xu, F., and A. Ignatov, 2014: In situ SST Quality Monitor (iQuam). J. Atmos. Oceanic Technol., 31, 164–180. doi: 10.1175/JTECH-D-13-00121.1
[44] Xie, S.-P., K. Hu, J. Hafner, et al, 2009: Indain Ocean capacitor effect on Indo-western Pacific climate during the summer following El Niño. J. Climate, 22, 730–747. doi: 10.1175/2008JCLI2544.1
[45] Yang, J., Q. Liu, S.-P. Xie, et al, 2007: Impact of the Indian Ocean SST basin mode on the Asian summer monsoon. Geophys. Res. Lett., 34, L02708. doi: 10.1029/2006GL028571
[46] Yang, J., P. Zhang, N. M. Lu, et al., 2012: Improvements on glo-bal meteorological observations from the current Fengyun 3 satellites and beyond. Int. J. Digital Earth, 5, 251–265. doi: 10.1080/17538947.2012.658666
[47] Zebiak, S. E., 1993: Air–sea interaction in the equatorial Atlantic region. J. Climate, 6, 1567–1586. doi: 10.1175/1520-0442(1993)006<1567:AIITEA>2.0.CO;2
[48] Zhang, R. H., and A. Sumi, 2002: Moisture circulation over East Asia during El Niño episode in northern winter, spring and autumn. J. Meteor. Soc. Japan, 80, 213–227. doi: 10.2151/jmsj.80.213
[49] Zhang, R. H., A. Sumi, and M. Kimoto, 1999: A diagnostic study of the impact of El Niño on the precipitation in China. Adv. Atmos. Sci., 16, 229–241. doi: 10.1007/BF02973084
[50] Zhang, Z. Y., D. Y. Gong, D. Guo, et al., 2008: Anomalous winter temperature and precipitation events in southern China. Acta Geogra. Sinica, 63, 899–912. (in Chinese) doi: 10.3321/j.issn:0375-5444.2008.09.001
[51] Zhou, L. T., and R. G. Wu, 2010: Respective impacts of the East Asian winter monsoon and ENSO on winter rainfall in China. J. Geophy. Res. Atmos., 115, D02107. doi: 10.1029/2009JD012502