[1] Bao, X. H., F. Q. Zhang, and J. H. Sun, 2011: Diurnal variations of warm-season precipitation east of the Tibetan Plateau over China. Mon. Wea. Rev., 139, 2790–2810. doi: 10.1175/MWR-D-11-00006.1
[2] Chen, B., X.-D. Xu, S. Yang, et al., 2012: On the origin and destination of atmospheric moisture and air mass over the Tibetan Plateau. Theor. Appl. Climatol., 110, 423–435. doi: 10.1007/s00704-012-0641-y
[3] Chen, G. X., R. Yoshida, W. M. Sha, et al., 2014: Convective instability associated with the eastward-propagating rainfall episodes over eastern China during the warm season. J. Climate, 27, 2331–2339. doi: 10.1175/JCLI-D-13-00443.1
[4] Chen, S.-J., Y.-H. Kuo, W. Wang, et al., 1998: A modeling case study of heavy rainstorms along the Mei-Yu front. Mon. Wea. Rev., 126, 2330–2351. doi: 10.1175/1520-0493(1998)126<2330:AMCSOH>2.0.CO;2
[5] Chen, Z.-M., 2007: Effects of barotropic and baroclinic forces on the excitation and maintenance for torrential rain. Chinese J. Atmos. Sci., 31, 291–297. (in Chinese) doi: 10.3878/j.issn.1006-9895.2007.02.10
[6] Chen, Z.-M., K.-Q. Yang, and H.-Y. Wu, 2009: Mechanism of heavy rainfall maintenance and increment in convergence excited by coupling forces between dynamic and thermodynamic fields. Acta Phys. Sinica, 58, 4362–4371. (in Chinese) doi: 10.3321/j.issn:1000-3290.2009.06.116
[7] Dee, D. P., S. M. Uppala, A. J. Simmons, et al., 2011: The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553–597. doi: 10.1002/qj.828
[8] Ding, Y. H., and J. C. L. Chan, 2005: The East Asian summer monsoon: an overview. Meteor. Atmos. Phys., 89, 117–142. doi: 10.1007/s00703-005-0125-z
[9] Drumond, A., R. Nieto, and L. Gimeno, 2011: Sources of moisture for China and their variations during drier and wetter conditions in 2000–2004: a Lagrangian approach. Clim. Res., 50, 215–225. doi: 10.3354/cr01043
[10] Esmaili, R. B., Y. D. Tian, D. A. Vila, et al., 2016: A Lagrangian analysis of cold cloud clusters and their life cycles with satellite observations. J. Geophys. Res. Atmos., 121, 11,723–11,738. doi: 10.1002/2016JD025653
[11] Fu, R., Y. L. Hu, J. S. Wright, et al., 2006: Short circuit of water vapor and polluted air to the global stratosphere by convective transport over the Tibetan Plateau. Proc. Natl. Acad. Sci. USA, 103, 5664–5669. doi: 10.1073/pnas.0601584103
[12] Fu, S.-M., J.-H. Sun, J. Ling, et al., 2016: Scale interactions in sustaining persistent torrential rainfall events during the Mei-yu season. J. Geophys. Res. Atmos., 121, 12,856–12,876. doi: 10.1002/2016JD025446
[13] Fu, S.-M., R.-X. Liu, and J.-H. Sun, 2018: On the scale interactions that dominate the maintenance of a persistent heavy rainfall event: A piecewise energy analysis. J. Atmos. Sci., 75, 907–925. doi: 10.1175/JAS-D-17-0294.1
[14] Gao, S. T., X. R. Wang, and Y. S. Zhou, 2004: Generation of generalized moist potential vorticity in a frictionless and moist adiabatic flow. Geophys. Res. Lett., 31, L12113. doi: 10.1029/2003GL019152
[15] Huang, Y. J., and X. P. Cui, 2015: Moisture sources of torrential rainfall events in the Sichuan basin of China during summers of 2009–13. J. Hydrometeor., 16, 1906–1917. doi: 10.1175/JHM-D-14-0220.1
[16] Izquierdo, R., A. Avila, and M. Alarcón, 2012: Trajectory statistical analysis of atmospheric transport patterns and trends in precipitation chemistry of a rural site in NE Spain in 1984–2009. Atmos. Environ., 61, 400–408. doi: 10.1016/j.atmosenv.2012.07.060
[17] Jiang, Z. H., S. Jiang, Y. Shi, et al., 2017: Impact of moisture source variation on decadal-scale changes of precipitation in North China from 1951 to 2010. J. Geophys. Res. Atmos., 122, 600–613. doi: 10.1002/2016JD025795
[18] Jin, X., T. W. Wu, and L. Li, 2013: The quasi-stationary feature of nocturnal precipitation in the Sichuan Basin and the role of the Tibetan Plateau. Climate Dyn., 41, 977–994. doi: 10.1007/s00382-012-1521-y
[19] Li, L., R. H. Zhang, and M. Wen, 2014: Diurnal variation in the occurrence frequency of the Tibetan Plateau vortices. Meteor. Atmos. Phys., 125, 135–144. doi: 10.1007/s00703-014-0325-5
[20] Li, L., R. H. Zhang, and M. Wen, 2017: Genesis of southwest vortices and its relation to Tibetan Plateau vortices. Quart. J. Roy. Meteor. Soc., 143, 2556–2566. doi: 10.1002/qj.3106
[21] Li, L., R. H. Zhang, P. L. Wu, et al., 2020: Roles of Tibetan Plateau vortices in the heavy rainfall over southwestern China in early July 2018. Atmos. Res., 245, 105059. doi: 10.1016/j.atmosres.2020.105059
[22] Li, X. Z., W. Zhou, and Y. D. Chen, 2016: Detecting the origins of moisture over southeast China: Seasonal variation and heavy rainfall. Adv. Atmos. Sci., 33, 319–329. doi: 10.1007/s00376-015-4197-5
[23] Li, Y. N., Y. Deng, S. Yang, et al., 2018: Multi-scale temporospatial variability of the East Asian Meiyu-Baiu fronts: characterization with a suite of new objective indices. Climate Dyn., 51, 1659–1670. doi: 10.1007/s00382-017-3975-4
[24] Lu, E., Y. T. Zeng, Y. L. Luo, et al., 2014: Changes of summer precipitation in China: The dominance of frequency and intensity and linkage with changes in moisture and air temperature. J. Geophys. Res. Atmos., 119, 12,575–12,587. doi: 10.1002/2014JD022456
[25] Ninomiya, K., 2000: Large- and meso-α-scale characteristics of Meiyu/Baiu front associated with intense rainfalls in 1–10 July 1991. J. Meteor. Soc. Japan, 78, 141–157. doi: 10.2151/jmsj1965.78.2_141
[26] Salih, A. A. M., Q. Zhang, and M. Tjernström, 2015: Lagrangian tracing of Sahelian Sudan moisture sources. J. Geophys. Res. Atmos., 120, 6793–6808. doi: 10.1002/2015JD023238
[27] Sha, S., X. Y. Shen, and X. F. Li, 2018: The study of multi-scale energy interactions during a Meiyu front rainstorm. Part II: Practical application. Chinese J. Atmos. Sci., 42, 1119–1132. (in Chinese) doi: 10.3878/j.issn.1006-9895.1710.17196
[28] Stein, A. F., R. R. Draxler, G. D. Rolph, et al., 2015: NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bull. Amer. Meteor. Soc., 96, 2059–2077. doi: 10.1175/BAMS-D-14-00110.1
[29] Stohl, A., C. Forster, A. Frank, et al., 2005: Technical note: The Lagrangian particle dispersion model FLEXPART version 6.2. Atmos. Chem. Phys., 5, 2461–2474. doi: 10.5194/acp-5-2461-2005
[30] Sugimoto, S., 2020: Heavy precipitation over southwestern Japan during the Baiu season due to abundant moisture transport from synoptic-scale atmospheric conditions. SOLA, 16, 17–22. doi: 10.2151/sola.2020-004
[31] Sun, B., and H. J. Wang, 2015: Analysis of the major atmospheric moisture sources affecting three sub-regions of East China. Int. J. Climatol., 35, 2243–2257. doi: 10.1002/joc.4145
[32] Sun, J. H., and F. Q. Zhang, 2012: Impacts of mountain–plains solenoid on diurnal variations of rainfalls along the Mei-Yu front over the East China plains. Mon. Wea. Rev., 140, 379–397. doi: 10.1175/MWR-D-11-00041.1
[33] Sun, J. H., S. X. Zhao, G. K. Xu, et al., 2010: Study on a mesoscale convective vortex causing heavy rainfall during the mei-yu season in 2003. Adv. Atmos. Sci., 27, 1193–1209. doi: 10.1007/s00376-009-9156-6
[34] Tanaka, K., H. Ishikawa, T. Hayashi, et al., 2001: Surface energy budget at Amdo on the Tibetan Plateau using GAME/Tibet IOP98 data. J. Meteor. Soc. Japan, 79, 505–517. doi: 10.2151/jmsj.79.505
[35] Wang, C.-C., G. T.-J. Chen, and R. E. Carbone, 2011: The relationship between statistics of warm-season cloud episodes and synoptic weather regimes over the East Asian continent. Meteor. Atmos. Phys., 112, 117–124. doi: 10.1007/s00703-011-0123-2
[36] Wang, C.-C., G. T.-J. Chen, H.-L. Huang, et al., 2012: Synoptic conditions associated with propagating and nonpropagating cloud/rainfall episodes during the warm season over the East Asian continent. Mon. Wea. Rev., 140, 721–747. doi: 10.1175/MWR-D-11-00067.1
[37] Wang, Y. Q., O. L. Sen, and B. Wang, 2003: A highly resolved regional climate model (IPRC-RegCM) and its simulation of the 1998 severe precipitation event over China. Part I: Model description and verification of simulation. J. Climate, 16, 1721–1738. doi: 10.1175/1520-0442(2003)016<1721:AHRRCM>2.0.CO;2
[38] Wei, J. F., P. A. Dirmeyer, M. G. Bosilovich, et al., 2012: Water vapor sources for Yangtze River Valley rainfall: Climatology, variability, and implications for rainfall forecasting. J. Geophys. Res. Atmos., 117, D05126. doi: 10.1029/2011JD016902
[39] Wu, G. X., Y. P. Cai, and X. J. Tang, 1995: Moist potential vorticity and slantwise vorticity development. Acta Meteor. Sinica, 53, 387–405. (in Chinese) doi: 10.11676/qxxb1995.045
[40] Xu, L. X., R. H. Zhang, and Y. J. Qi, 2017: Differences in intraseasonal summer rainfall oscillation between the middle and lower reaches of the Yangtze River. Chinese J. Atmos. Sci., 41, 1125–1140. (in Chinese) doi: 10.3878/j.issn.1006-9895.1703.17112
[41] Xu, W. X., and E. J. Zipser, 2011: Diurnal variations of precipitation, deep convection, and lightning over and east of the eastern Tibetan Plateau. J. Climate, 24, 448–465. doi: 10.1175/2010JCLI3719.1
[42] Xu, X. D., M. Y. Zhou, J. Y. Chen, et al., 2002: A comprehensive physical pattern of land-air dynamic and thermal structure on the Qinghai-Xizang Plateau. Sci. China Ser. D Earth Sci., 45, 577–594. doi: 10.1360/02yd9060
[43] Xu, X. D., L. S. Chen, X. R. Wang, et al., 2004: Moisture transport source/sink structure of the Meiyu rain belt along the Yangtze River valley. Chinese Sci. Bull., 49, 181–188.
[44] Xu, X. D., T. L. Zhao, X. H. Shi, et al., 2015: A study of the role of the Tibetan Plateau’s thermal forcing in modulating rainband and moisture transport in eastern China. Acta Meteor. Sinica, 73, 20–35. (in Chinese) doi: 10.11676/qxxb2014.051
[45] Yang, H., Z. H. Jiang, Z. Y. Liu, et al., 2014: Analysis of climatic characteristics of water vapor transport based on the Lagrangian method: A comparison between Meiyu in the Yangtze–Huaihe River region and the Huaibei rainy season. Chinese J. Atmos. Sci., 38, 965–973. (in Chinese) doi: 10.3878/j.issn.1006-9895.1402.13228
[46] Yang, H., G.-Y. Xu, X. F. Wang, et al., 2019: Quantitative analysis of water vapor transport during Mei-yu front rainstorm period over the Tibetan Plateau and Yangtze-Huai River Basin. Adv. Meteor., 2019, 6029027. doi: 10.1155/2019/6029027
[47] Yasunari, T., and T. Miwa, 2006: Convective cloud systems over the Tibetan Plateau and their impact on meso-scale disturbances in the Meiyu/Baiu frontal zone. J. Meteor. Soc. Japan, 84, 783–803. doi: 10.2151/jmsj.84.783
[48] Zhang, R. H., 2001: Relations of water vapor transport from Indian monsoon with that over East Asia and the summer rainfall in China. Adv. Atmos. Sci., 18, 1005–1017. doi: 10.1007/BF03403519
[49] Zhang, Y. C., J. H. Sun, and S. M. Fu, 2014: Impacts of diurnal variation of mountain-plain solenoid circulations on precipitation and vortices east of the Tibetan Plateau during the mei-yu season. Adv. Atmos. Sci., 31, 139–153. doi: 10.1007/s00376-013-2052-0
[50] Zhao, Y. C., 2015: A study on the heavy-rain-producing mesoscale convective system associated with diurnal variation of radiation and topography in the eastern slope of the western Sichuan plateau. Meteor. Atmos. Phys., 127, 123–146. doi: 10.1007/s00703-014-0356-y