[1] Ahmed, K., D. A. Sachindra, S. Shahid, et al., 2020: Multi-model ensemble predictions of precipitation and temperature using machine learning algorithms. Atmos. Res., 236, 104806. doi: 10.1016/j.atmosres.2019.104806
[2] Bougeault, P., Z. Toth, C. Bishop, et al., 2010: The THORPEX interactive grand global ensemble. Bull. Amer. Meteor. Soc., 91, 1059–1072. doi: 10.1175/2010BAMS2853.1
[3] Bouttier, F., and H. Marchal, 2020: Probabilistic thunderstorm forecasting by blending multiple ensembles. Tellus A, 72, 1–19. doi: 10.1080/16000870.2019.1696142
[4] Cao, Y., C. H. Liu, Z. P. Zong, et al., 2016: State-level gridded quantitative precipitation forecasting system. Meteor. Mon., 42, 1476–1482.
[5] Chen, L. Q., X. S. Zhou, and S. Yang, 2005: A quantitative precipitation forecasts method for short-range ensemble forecasting. J. Nanjing Inst. Meteor., 28, 543–548. (in Chinese) doi: 10.3969/j.issn.1674-7097.2005.04.015
[6] Copernicus Climate Change Service (C3S), 2017: ERA5: Fifth Generation of ECMWF Atmospheric Reanalyses of the Global Climate. Copernicus Climate Change Service Climate Data Store (CDS). Available online at https://reanalyses.org/atmosphere/era5-references.
[7] Craven, J. P., D. E. Rudack, and P. E. Shafer, 2020: National blend of models: A statistically post-processed multi-model ensemble. J. Oper. Meteor., 8, 1–14. doi: 10.15191/nwajom.2020.0801
[8] Dai, K., Y. Cao, Q. F. Qian, et al., 2016: Situation and tendency of operational technologies in short- and medium-range weather forecast. Meteor. Mon., 42, 1445–1455. (in Chinese)
[9] Dai, K., Y. J. Zhu, and B. G. Bi, 2018: The review of statistical post-process technologies for quantitative precipitation forecast of ensemble prediction system. Acta Meteor. Sinica, 76, 493–510. (in Chinese) doi: 10.11676/qxxb2018.015
[10] Dee, D. P., S. M. Uppala, A. J. Simmons, et al., 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553–597. doi: 10.1002/qj.828
[11] Ebert, E. E., 2001: Ability of a poor man’s ensemble to predict the probability and distribution of precipitation. Mon. Wea. Rev., 129, 2461–2480.
[12] Gao, S., K. Dai, and F. Xue, 2014: The design and development of grid edit platform based on MICAPS 3.2 system. Meteor. Mon., 40, 1152–1158. (in Chinese)
[13] Glahn, H. R., and D. P. Ruth, 2003: The new digital forecast database of the national weather service. Bull. Amer. Meteor. Soc., 84, 195–202. doi: 10.1175/BAMS-84-2-195
[14] Gorry, P. A., 1990: General least-squares smoothing and differentiation by the convolution (Savitzky−Golay) method. Anal. Chem., 62, 570–573. doi: 10.1021/ac00205a007
[15] Haiden, T., A. Kann, C. Wittmann, et al., 2011: The Integrated Nowcasting through Comprehensive Analysis (INCA) system and its validation over the eastern alpine region. Wea. Forecasting, 26, 166–183. doi: 10.1175/2010WAF2222451.1
[16] Hamill, T. M., and M. Scheuerer, 2018: Probabilistic precipitation forecast postprocessing using quantile mapping and rank-weighted best-member dressing. Mon. Wea. Rev., 146, 4079–4098. doi: 10.1175/MWR-D-18-0147.1
[17] Hamill, T. M., E. Engle, D. Myrick, et al., 2017: The U.S. national blend of models for statistical postprocessing of probability of precipitation and deterministic precipitation amount. Mon. Wea. Rev., 145, 3441–3463. doi: 10.1175/MWR-D-16-0331.1
[18] He, Y. N., S. Gao, F. Xue, et al., 2018: Design and implementation of intelligent grid forecasting platform based on MICAPS4. J. Appl. Meteor. Sci., 29, 13–24. (in Chinese) doi: 10.11898/1001-7313.20180102
[19] Huang, L. P., D. H. Chen, L. T. Deng, et al., 2017: Main technical improvements of GRAPES_Meso V4.0 and verification. J. Appl. Meteor. Sci., 28, 25–37. (in Chinese) doi: 10.11898/1001-7313.20170103
[20] Ji, L. Y., X. F. Zhi, C. Simmer, et al., 2020: Multimodel ensemble forecasts of precipitation based on an object-based diagnostic evaluation. Mon. Wea. Rev., 148, 2591–2606. doi: 10.1175/MWR-D-19-0266.1
[21] Jin, R. H., K. Dai, R. X. Zhao, et al., 2019: Progress and challenge of seamless fine gridded weather forecasting technology in China. Meteor. Mon., 45, 445–457. (in Chinese)
[22] Kober, K., G. C. Craig, C. Keil, et al., 2012: Blending a probabilistic nowcasting method with a high-resolution numerical weather prediction ensemble for convective precipitation forecasts. Quart. J. Roy. Meteor. Soc., 138, 755–768. doi: 10.1002/qj.939
[23] Li, K., and S. Q. Yang, 2010: Image smooth denoising based on Savitzky−Golay algorithm. J. Data Acquisit. Proc., 25, 72–74. (in Chinese) doi: 10.16337/j.1004-9037.2010.s1.037
[24] Liu, C. H., and R. Y. Niu, 2013: Object-based precipitation verification method and its application. Meteor. Mon., 39, 681–690. (in Chinese)
[25] Lyu, L. Y., X. M. Wang, and H. Li, 2019: Verification and analy-sis of SMS-WARMS forecast for “7.19” extraordinary rainstorm in Henan Province. Meteor. Environ. Sci., 42, 101–109. (in Chinese) doi: 10.16765/j.cnki.1673-7148.2019.01.014
[26] Maraun, D., 2013: Bias correction, quantile mapping, and downscaling: Revisiting the inflation issue. J. Climate, 26, 2137–2143. doi: 10.1175/JCLI-D-12-00821.1
[27] Nerini, D., L. Foresti, D. Leuenberger, et al., 2019: A reduced-space ensemble kalman filter approach for flow-dependent integration of radar extrapolation nowcasts and NWP precipitation ensembles. Mon. Wea. Rev., 147, 987–1006. doi: 10.1175/MWR-D-18-0258.1
[28] Pakdaman, M., Y. Falamarzi, I. Babaeian, et al., 2020: Post-processing of the North American multi-model ensemble for monthly forecast of precipitation based on neural network models. Theor. Appl. Climatol., 141, 405–417. doi: 10.1007/s00704-020-03211-6
[29] Pan, Y., J. X. Gu, B. Xu, et al., 2018: Advances in multi-source precipitation merging research. Adv. Meteor. Sci. Technol., 8, 143–152. (in Chinese) doi: 10.3969/j.issn.2095-1973.2018.01.019
[30] Raftery, A. E., T. Gneiting, F. Balabdaoui, et al., 2005: Using bayesian model averaging to calibrate forecast ensembles. Mon. Wea. Rev., 133, 1155–1174. doi: 10.1175/MWR2906.1
[31] Rauser, F., M. Alqadi, S. Arowolo, et al., 2017: Earth system science frontiers: An early career perspective. Bull. Amer. Meteor. Soc., 98, 1120–1127. doi: 10.1175/BAMS-D-16-0025.1
[32] Savitzky, A., and M. J. E. Golay, 1964: Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem., 36, 1627–1639. doi: 10.1021/ac60214a047
[33] Scheuerer, M., 2014: Probabilistic quantitative precipitation forecasting using Ensemble Model Output Statistics. Quart. J. Roy. Meteor. Soc., 140, 1086–1096. doi: 10.1002/qj.2183
[34] Scheuerer, M., and T. M. Hamill, 2015: Statistical postprocessing of ensemble precipitation forecasts by fitting censored, shifted gamma distributions. Mon. Wea. Rev., 143, 4578–4596. doi: 10.1175/MWR-D-15-0061.1
[35] Schwartz, C. S., and R. A. Sobash, 2017: Generating probabilistic forecasts from convection-allowing ensembles using neighborhood approaches: A review and recommendations. Mon. Wea. Rev., 145, 3397–3418. doi: 10.1175/MWR-D-16-0400.1
[36] Seity, Y., P. Brousseau, S. Malardel, et al., 2011: The AROME-france convective-scale operational model. Mon. Wea. Rev., 139, 976–991. doi: 10.1175/2010MWR3425.1
[37] Shen, X. S., Y. Su, J. L. Hu, et al., 2017: Development and operation transformation of GRAPES global middle-range forecast system. J. Appl. Meteor. Sci., 28, 1–10. (in Chinese) doi: 10.11898/1001-7313.20170101
[38] Swinbank, R., M. Kyouda, P. Buchanan, et al., 2016: The TIGGE project and its achievements. Bull. Amer. Meteor. Soc., 97, 49–67. doi: 10.1175/BAMS-D-13-00191.1
[39] Tang, J., K. Dai, Z. P. Zong, et al., 2018: Methods and platform realization of the national QPF master blender. Meteor. Mon., 44, 1020–1032. (in Chinese)
[40] Theis, S. E., A. Hense, and U. Damrath, 2005: Probabilistic precipitation forecasts from a deterministic model: A pragmatic approach. Meteor. Appl., 12, 257–268. doi: 10.1017/S1350482705001763
[41] Vannitsem, S., J. B. Bremnes, J. Demaeyer, et al., 2020: Statistical postprocessing for weather forecasts: Review, challenges and avenues in a big data world. Bull. Amer. Meteor. Soc. . doi: 10.1175/BAMS-D-19-0308.1
[42] Wang, R. T., J. M. Wang, X. D. Huang, et al., 2018: The architecture design of MICAPS4 server system. J. Appl. Meteor. Sci., 29, 1–12. (in Chinese) doi: 10.11898/1001-7313.20180101
[43] Wang, Y., M. Bellus, C. Wittmann, et al., 2011: The central european limited-area ensemble forecasting system: ALADIN-LAEF. Quart. J. Roy. Meteor. Soc., 137, 483–502. doi: 10.1002/qj.751
[44] Wastl, C., A. Simon, Y. Wang, et al., 2018: A seamless probabilistic forecasting system for decision making in Civil Protection. Meteor. Z., 27, 417–430. doi: 10.1127/metz/2018/902
[45] Wei, Q., W. Li, P. Song, et al., 2019: Development and application of national verification system in CMA. J. Appl. Meteor. Sci., 30, 245–256. (in Chinese) doi: 10.11898/1001-7313.20190211
[46] Wu, Q. S., M. Han, M. Liu, et al., 2017: A comparison of optimal-score-based correction algorithms of model precipitation prediction. J. Appl. Meteor. Sci., 28, 306–317. (in Chinese) doi: 10.11898/1001-7313.20170305
[47] Xiong, M. Q., 2017: Calibrating daily 2 m maximum and minimum air temperature forecasts in the ensemble prediction system. Acta Meteor. Sinica, 75, 211–222. (in Chinese) doi: 10.11676/qxxb2017.023
[48] Yu, W., E. Nakakita, S. Kim, et al., 2015: Improvement of rainfall and flood forecasts by blending ensemble NWP rainfall with radar prediction considering orographic rainfall. J. Hydrol., 531, 494–507. doi: 10.1016/j.jhydrol.2015.04.055
[49] Yuan, H. L., X. G. Gao, S. L. Mullen, et al., 2007: Calibration of probabilistic quantitative precipitation forecasts with an artificial neural network. Wea. Forecasting, 22, 1287–1303. doi: 10.1175/2007WAF2006114.1
[50] Zhang, F. H., Y. Cao, J. Xu, et al., 2016: Application of the logistic discriminant model in heavy rain forecasting. Meteor. Mon., 42, 398–405. (in Chinese)
[51] Zhang, H. B., X. F. Zhi, J. Chen, et al., 2015: Study of the modification of multi-model ensemble schemes for tropical cyclone forecasts. J. Trop. Meteor., 21, 389–399. doi: 10.16555/j.1006-8775.2015.04.007
[52] Zhi, X. F., H. X. Qi, and Y. Q. Bai, 2012: A comparison of three kinds of multimodel ensemble forecast techniques based on the TIGGE data. Acta Meteor. Sinica, 26, 41–51. doi: 10.1007/s13351-012-0104-5
[53] Zhu, Y. J., and Y. Luo, 2015: Precipitation calibration based on the frequency-matching method. Wea. Forecasting, 30, 1109–1124. doi: 10.1175/WAF-D-13-00049.1
[54] Zong, Z. P., K. Dai, and X. Jiang, 2012: The research progress of quantitative precipitation forecast. Adv. Meteor. Sci. Technol., 2, 29–35. (in Chinese)