[1] Aguilar, E., T. C. Peterson, P. R. Obando, et al., 2005: Changes in precipitation and temperature extremes in Central America and northern South America, 1961–2003. J. Geophys. Res. Atmos., 110, D23107. doi: 10.1029/2005JD006119
[2] Allen, M. R., P. A. Stott, J. F. B. Mitchell, et al., 2000: Quantifying the uncertainty in forecasts of anthropogenic climate change. Nature, 407, 617–620. doi: 10.1038/35036559
[3] Aloysius, N. R., J. Sheffield, J. E. Saiers, et al., 2016: Evaluation of historical and future simulations of precipitation and temperature in central Africa from CMIP5 climate models. J. Geophys. Res. Atmos., 121, 130–152. doi: 10.1002/2015jd023656
[4] Blázquez, J., and M. N. Nuñez, 2013: Analysis of uncertainties in future climate projections for South America: comparison of WCRP-CMIP3 and WCRP-CMIP5 models. Climate Dyn., 41, 1039–1056. doi: 10.1007/s00382-012-1489-7
[5] Booth, B. B. B., D. Bernie, D. McNeall, et al., 2013: Scenario and modelling uncertainty in global mean temperature change derived from emission-driven global climate models. Earth Syst. Dyn., 4, 95–108. doi: 10.5194/esd-4-95-2013
[6] Brekke, L. D., M. D. Dettinger, E. P. Maurer, et al., 2008: Significance of model credibility in estimating climate projection distributions for regional hydroclimatological risk assessments. Climatic Change, 89, 371–394. doi: 10.1007/s10584-007-9388-3
[7] Cess, R. D., G. L. Potter, J. P. Blanchet, et al., 1990: Intercomparison and interpretation of climate feedback processes in 19 atmospheric general circulation models. J. Geophys. Res. Atmos., 95, 16,601–16,615. doi: 10.1029/JD095iD10p16601
[8] Cess, R. D., M. H. Zhang, W. J. Ingram, et al., 1996: Cloud feedback in atmospheric general circulation models: An update. J. Geophys. Res. Atmos., 101, 12,791–12,794. doi: 10.1029/96JD00822
[9] Chen, J., F. P. Brissette, and P. Lucas-Picher, 2016: Transferability of optimally-selected climate models in the quantification of climate change impacts on hydrology. Climate Dyn., 47, 3359–3372. doi: 10.1007/s00382-016-3030-x
[10] Chen, Z. M., T. J. Zhou, L. X. Zhang, et al., 2020: Global land monsoon precipitation changes in CMIP6 projections. Geophys. Res. Lett., 47, e2019GL086902. doi: 10.1029/2019GL086902
[11] Chou, M.-D., and M. J. Suarez, 1994: An Efficient Thermal Infrared Radiation Parameterization for Use in General Circulation Models. NASA/TM 104606, National Aeronautics and Space Administration, Goddard Space Flight Center, Greenbelt, Maryland, 85 pp. Accessed on 5 July 2021, available at https://searchworks.stanford.edu/view/11417304.
[12] Chu, P.-S., Y. R. Chen, and T. A. Schroeder, 2010: Changes in precipitation extremes in the Hawaiian Islands in a warming climate. J. Climate, 23, 4881–4900. doi: 10.1175/2010JCLI3484.1
[13] Colman, R., 2003: A comparison of climate feedbacks in general circulation models. Climate Dyn., 20, 865–873. doi: 10.1007/s00382-003-0310-z
[14] Cox, P., and D. Stephenson, 2007: A changing climate for prediction. Science, 317, 207–208. doi: 10.1126/science.1145956
[15] Deser, C., A. Phillips, V. Bourdette, et al., 2012a: Uncertainty in climate change projections: the role of internal variability. Climate Dyn., 38, 527–546. doi: 10.1007/s00382-010-0977-x
[16] Deser, C., R. Knutti, S. Solomon, et al., 2012b: Communication of the role of natural variability in future North American climate. Nat. Climate Change, 2, 775–779. doi: 10.1038/nclimate1562
[17] Dobler, C., S. Hagemann, R. L. Wilby, et al., 2012: Quantifying different sources of uncertainty in hydrological projections in an Alpine watershed. Hydrol. Earth Syst. Sci., 16, 4343–4360. doi: 10.5194/hess-16-4343-2012
[18] Entekhabi, D., and P. S. Eagleson, 1989: Land surface hydrology parameterization for atmospheric general circulation models including subgrid scale spatial variability. J. Climate, 2, 816–831. doi: 10.1175/1520-0442(1989)002<0816:LSHPFA>2.0.CO;2
[19] Evin, G., B. Hingray, J. Blanchet, et al., 2019: Partitioning uncertainty components of an incomplete ensemble of climate projections using data augmentation. J. Climate, 32, 2423–2440. doi: 10.1175/JCLI-D-18-0606.1
[20] Eyring, V., S. Bony, G. A. Meehl, et al., 2015: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organisation. Geosci. Model Dev. Discuss., 8, 10,539–10,583. doi: 10.5194/gmdd-8-10539-2015
[21] Fatichi, S., V. Y. Ivanov, A. Paschalis, et al., 2016: Uncertainty partition challenges the predictability of vital details of climate change. Earth’s Future, 4, 240–251. doi: 10.1002/2015EF000336
[22] Fischer, E. M., U. Beyerle, and R. Knutti, 2013: Robust spatially aggregated projections of climate extremes. Nat. Climate Change, 3, 1033–1038. doi: 10.1038/nclimate2051
[23] Hawkins, E., and R. Sutton, 2009: The potential to narrow uncertainty in regional climate predictions. Bull. Amer. Meteor. Soc., 90, 1095–1108. doi: 10.1175/2009BAMS2607.1
[24] Hawkins, E., and R. Sutton, 2011: The potential to narrow uncertainty in projections of regional precipitation change. Climate Dyn., 37, 407–418. doi: 10.1007/s00382-010-0810-6
[25] Herrera-Estrada, J. E., and J. Sheffield, 2017: Uncertainties in future projections of summer droughts and heat waves over the contiguous United States. J. Climate, 30, 6225–6246. doi: 10.1175/JCLI-D-16-0491.1
[26] Hewitt, R. J., R. Cremades, D. V. Kovalevsky, et al., 2020: Beyond shared socioeconomic pathways (SSPs) and representative concentration pathways (RCPs): climate policy implementation scenarios for Europe, the US and China. Climate Policy, 21, 434–454. doi: 10.1080/14693062.2020.1852068
[27] Hingray, B., and M. Saïd, 2014: Partitioning internal variability and model uncertainty components in a multimember multimodel ensemble of climate projections. J. Climate, 27, 6779–6798. doi: 10.1175/JCLI-D-13-00629.1
[28] IPCC, 2007: Climate Change 2007: The Physical Science Basis: Working Group I Contribution to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, 996 pp.
[29] IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, 1535 pp.
[30] Kang, S. M., C. Deser, and L. M. Polvani, 2013: Uncertainty in climate change projections of the Hadley circulation: The role of internal variability. J. Climate, 26, 7541–7554. doi: 10.1175/JCLI-D-12-00788.1
[31] Knutson, T. R., F. R. Zeng, and A. T. Wittenberg, 2013: Multimodel assessment of regional surface temperature trends: CMIP3 and CMIP5 twentieth-century simulations. J. Climate, 26, 8709–8743. doi: 10.1175/JCLI-D-12-00567.1
[32] Knutti, R., M. R. Allen, P. Friedlingstein, et al., 2008: A review of uncertainties in global temperature projections over the twenty-first century. J. Climate, 21, 2651–2663. doi: 10.1175/2007JCLI2119.1
[33] Lee, M.-H., C.-H. Ho, J. Kim, et al., 2012: Assessment of the changes in extreme vulnerability over East Asia due to global warming. Climatic Change, 113, 301–321. doi: 10.1007/s10584-011-0345-9
[34] Lehner, F., C. Deser, N. Maher, et al., 2020: Partitioning climate projection uncertainty with multiple large ensembles and CMIP5/6. Earth Syst. Dyn., 11, 491–508. doi: 10.5194/esd-11-491-2020
[35] Lu, J. W., T. J. Zhou, X. Huang, et al., 2020: A comparison of three methods for estimating internal variability of near-surface air temperature. Chinese J. Atmos. Sci., 44, 105–121. (in Chinese) doi: 10.3878/j.issn.1006-9895.1901.18235
[36] Meinshausen, M., S. J. Smith, K. Calvin, et al., 2011: The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Climatic Change, 109, 213. doi: 10.1007/s10584-011-0156-z
[37] Moss, R. H., J. A. Edmonds, K. A. Hibbard, et al., 2010: The next generation of scenarios for climate change research and assessment. Nature, 463, 747–756. doi: 10.1038/nature08823
[38] Nakaegawa, T., A. Kitoh, H. Murakami, et al., 2014: Annual maximum 5-day rainfall total and maximum number of consecutive dry days over Central America and the Caribbean in the late twenty-first century projected by an atmospheric general circulation model with three different horizontal resolutions. Theor. Appl. Climatol., 116, 155–168. doi: 10.1007/s00704-013-0934-9
[39] Nakicenovic, N., J. Alcamo, A. Grubler, et al., 2000: Special Reporton Emissions Scenarios: A Special Report of Working Group III of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, 599 pp.
[40] Neumann, M., V. Mues, A. Moreno, et al., 2017: Climate variability drives recent tree mortality in Europe. Glob. Change Biol., 23, 4788–4797. doi: 10.1111/gcb.13724
[41] O’Neill, B. C., E. Kriegler, K. L. Ebi, et al., 2017: The roads ahead: Narratives for shared socioeconomic pathways describing world futures in the 21st century. Glob. Environ. Change, 42, 169–180. doi: 10.1016/j.gloenvcha.2015.01.004
[42] Olonscheck, D., and D. Notz, 2017: Consistently estimating inter-nal climate variability from climate model simulations. J. Climate, 30, 9555–9573. doi: 10.1175/JCLI-D-16-0428.1
[43] Schneider, E. K., and J. L. Kinter III, 1994: An examination of internally generated variability in long climate simulations. Climate Dyn., 10, 181–204. doi: 10.1007/BF00208987
[44] Slingo, J. M., K. R. Sperber, J. S. Boyle, et al., 1996: Intraseaso-nal oscillations in 15 atmospheric general circulation models: results from an AMIP diagnostic subproject. Climate Dyn., 12, 325–357. doi: 10.1007/BF00231106
[45] Stainforth, D. A., M. R. Allen, E. R. Tredger, et al., 2007: Confidence, uncertainty and decision-support relevance in climate predictions. Philos. Trans. R. Soc. Lond. A: Math., Phys. Eng. Sci., 365, 2145–2161. doi: 10.1098/rsta.2007.2074
[46] Stott, P. A., and J. A. Kettleborough, 2002: Origins and estimates of uncertainty in predictions of twenty-first century temperature rise. Nature, 416, 723–726. doi: 10.1038/416723a
[47] Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485–498. doi: 10.1175/BAMS-D-11-00094.1
[48] Tokarska, K. B., M. B. Stolpe, S. Sippel, et al., 2020: Past warming trend constrains future warming in CMIP6 models. Sci. Adv., 6, eaaz9549. doi: 10.1126/sciadv.aaz9549
[49] Trenberth, K. E., 2012: Framing the way to relate climate extremes to climate change. Climatic Change, 115, 283–290. doi: 10.1007/s10584-012-0441-5
[50] van Pelt, S. C., J. J. Beersma, T. A. Buishand, et al., 2015: Uncertainty in the future change of extreme precipitation over the Rhine basin: the role of internal climate variability. Climate Dyn., 44, 1789–1800. doi: 10.1007/s00382-014-2312-4
[51] van Vuuren, D. P., J. Edmonds, M. Kainuma, et al., 2011: The representative concentration pathways: an overview. Climatic Change, 109, 5. doi: 10.1007/s10584-011-0148-z
[52] Wang, H.-M., J. Chen, A. J. Cannon, et al., 2018: Transferability of climate simulation uncertainty to hydrological impacts. Hydrol. Earth Syst. Sci., 22, 3739–3759. doi: 10.5194/hess-22-3739-2018
[53] Wang, H.-M., J. Chen, C.-Y. Xu, et al., 2020: A framework to quantify the uncertainty contribution of GCMs over multiple sources in hydrological impacts of climate change. Earth’s Future, 8, e2020EF001602. doi: 10.1029/2020ef001602
[54] Wehner, M., 2010: Sources of uncertainty in the extreme value statistics of climate data. Extremes, 13, 205–217. doi: 10.1007/s10687-010-0105-7
[55] Wood, E. F., D. P. Lettenmaier, and V. G. Zartarian, 1992: A land-surface hydrology parameterization with subgrid variability for general circulation models. J. Geophys. Res. Atmos., 97, 2717–2728. doi: 10.1029/91JD01786
[56] Xin, X. G., T. W. Wu, J. Zhang, et al., 2020: Comparison of CMIP6 and CMIP5 simulations of precipitation in China and the East Asian summer monsoon. Int. J. Climatol., 40, 6423–6440. doi: 10.1002/joc.6590
[57] Xu, K., B. B. Xu, J. J. Ju, et al., 2019: Projection and uncertainty of precipitation extremes in the CMIP5 multimodel ensembles over nine major basins in China. Atmos. Res., 226, 122–137. doi: 10.1016/j.atmosres.2019.04.018
[58] Yang, X., E. F. Wood, J. Sheffield, et al., 2018: Bias correction of historical and future simulations of precipitation and temperature for China from CMIP5 models. J. Hydrometeorol., 19, 609–623. doi: 10.1175/jhm-d-17-0180.1
[59] Yao, J. Q., Y. N. Chen, J. Chen, et al., 2020: Intensification of extreme precipitation in arid Central Asia. J. Hydrol., 598, 125760. doi: 10.1016/j.jhydrol.2020.125760
[60] Yip, S., C. A. T. Ferro, D. B. Stephenson, et al., 2011: A simple, coherent framework for partitioning uncertainty in climate predictions. J. Climate, 24, 4634–4643. doi: 10.1175/2011JCLI4085.1
[61] Zelinka, M. D., T. A. Myers, D. T. McCoy, et al., 2020: Causes of higher climate sensitivity in CMIP6 models. Geophys. Res. Lett., 47, e2019GL085782. doi: 10.1029/2019GL085782
[62] Zhou, T. J., J. W. Lu, W. X. Zhang, et al., 2020a: The sources of uncertainty in the projection of global land monsoon precipitation. Geophys. Res. Lett., 47, e2020GL088415. doi: 10.1029/2020GL088415
[63] Zhou, T. J., W. X. Zhang, X. L. Chen, et al., 2020b: The near-term, mid-term and long-term projections of temperature and precipitation changes over the Tibetan Plateau and the sources of uncertainties. J. Meteor. Sci., 40, 697–710. (in Chinese)
[64] Zhuan, M.-J., J. Chen, M.-X. Shen, et al., 2018: Timing of human-induced climate change emergence from internal climate variability for hydrological impact studies. Hydrol. Res., 49, 421–437. doi: 10.2166/nh.2018.059
[65] Zhuan, M. J., J. Chen, C.-Y. Xu, et al., 2019: A method for investigating the relative importance of three components in overall uncertainty of climate projections. Int. J. Climatol., 39, 1853–1871. doi: 10.1002/joc.5920