[1] Barry, R. G., 2008: Mountain Weather and Climate. 3rd Ed., Cambridge University Press, Cambridge, 171 pp.
[2] Cape, M. R., M. Vernet, P. Skvarca, et al., 2015: Foehn winds link climate-driven warming to ice shelf evolution in Antarctica. J. Geophys. Res. Atmos., 120, 11037–11057. doi: 10.1002/2015JD023465
[3] Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569–585. doi: 10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2
[4] Cook, A. J., and D. G. Vaughan, 2010: Overview of areal changes of the ice shelves on the Antarctic Peninsula over the past 50 years. Cryosphere, 4, 77–98. doi: 10.5194/tc-4-77-2010
[5] Cook, A. J., A. J. Fox, D. G. Vaughan, et al., 2005: Retreating glacier fronts on the Antarctic Peninsula over the past half-century. Science, 308, 541–544. doi: 10.1126/science.1104235
[6] Elvidge, A. D., and I. A. Renfrew, 2016: The causes of foehn warming in the lee of mountains. Bull. Amer. Meteor. Soc., 97, 455–466. doi: 10.1175/BAMS-D-14-00194.1
[7] Elvidge, A. D., I. A. Renfrew, J. C. King, et al., 2016: Foehn warming distributions in nonlinear and linear flow regimes: A focus on the Antarctic Peninsula. Quart. J. Roy. Meteor. Soc., 142, 618–631. doi: 10.1002/qj.2489
[8] Grosvenor, D. P., J. C. King, T. W. Choularton, et al., 2014: Downslope föhn winds over the Antarctic Peninsula and their effect on the Larsen ice shelves. Atmos. Chem. Phys., 14, 9481–9509. doi: 10.5194/acp-14-9481-2014
[9] Hogg, A. E., and G. H. Gudmundsson, 2017: Impacts of the Larsen-C ice shelf calving event. Nature Climate Change, 7, 540–542. doi: 10.1038/nclimate3359
[10] Hong, S. Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 2318–2341. doi: 10.1175/MWR3199.1
[11] Iacono, M. J., J. S. Delamere, E. J. Mlawer, et al., 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. Geophys. Res. Lett., 113, D13103. doi: 10.1029/2008JD009944
[12] Kain, J. S., 2004: The Kain-Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170–181. doi: 10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2
[13] Marshall, G. J., A. Orr, N. P. M. van Lipzig, et al., 2006: The impact of a changing Southern Hemisphere Annular Mode on Antarctic Peninsula summer temperatures. J. Climate, 19, 5388–5404. doi: 10.1175/JCLI3844.1
[14] Morrison, H., G. Thompson, and V. Tatarskii, 2009: Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one- and two-moment schemes. Mon. Wea. Rev., 137, 991–1007. doi: 10.1175/2008MWR2556.1
[15] Munneke, P. K., M. R. van den Broeke, J. C. King, et al., 2012: Near-surface climate and surface energy budget of Larsen C ice shelf, Antarctic Peninsula. Cryosphere, 6, 353–363. doi: 10.5194/tc-6-353-2012
[16] Orr, A., D. Cresswell, G. J. Marshall, et al., 2004: A ‘low-level’ explanation for the recent large warming trend over the western Antarctic Peninsula involving blocked winds and changes in zonal circulation. Geophys. Res. Lett., 31, L06204. doi: 10.1029/2003GL019160
[17] Orr, A., G. J. Marshall, J. C. R. Hunt, et al., 2008: Characteristics of summer airflow over the Antarctic Peninsula in response to recent strengthening of westerly circumpolar winds. J. Atmos. Sci., 65, 1396–1413. doi: 10.1175/2007JAS2498.1
[18] Paulson, C. A., 1970: The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer. J. Appl. Meteor., 9, 857–861. doi: 10.1175/1520-0450(1970)009<0857:TMROWS>2.0.CO;2
[19] Pritchard, H. D., R. J. Arthern, D. G. Vaughan, et al., 2009: Extensive dynamic thinning on the margins of the Greenland and Antarctic ice sheets. Nature, 461, 971–975. doi: 10.1038/nature08471
[20] Rignot, E., J. L. Bamber, M. R. van den Broeke, et al., 2008: Recent Antarctic ice mass loss from radar interferometry and regional climate modelling. Nature Geoscience, 1, 106–110. doi: 10.1038/ngeo102
[21] Scambos, T. A., C. Hulbe, M. Fahnestock, et al., 2000: The link between climate warming and break-up of ice shelves in the Antarctic Peninsula. J. Glaciology, 46, 516–530. doi: 10.3189/172756500781833043
[22] Shepherd, A., D. Wingham, T. Payne, et al., 2003: Larsen ice shelf has progressively thinned. Science, 302, 856–859. doi: 10.1126/science.1089768
[23] van den Broeke, M., 2005: Strong surface melting preceded collapse of Antarctic Peninsula ice shelf. Geophys. Res. Lett., 32, L12815. doi: 10.1029/2005GL023247
[24] van Lipzig, N. P. M., G. J. Marshall, A. Orr, et al., 2008: The relationship between the Southern Hemisphere annular mode and Antarctic Peninsula summer temperatures: Analysis of a high-resolution model climatology. J. Climate, 21, 1649–1668. doi: 10.1175/2007JCLI1695.1
[25] Vaughan, D. G., 2006: Recent trends in melting conditions on the Antarctic Peninsula and their implications for ice-sheet mass balance and sea level. Arct. Antarct. Alp. Res., 38, 147–152. doi: 10.1657/1523-0430(2006)038[0147:RTIMCO]2.0.CO;2
[26] Vaughan, D. G., G. J. Marshall, W. M. Connolley, et al., 2003: Recent rapid regional climate warming on the Antarctic Peninsula. Climatic Change, 60, 243–274. doi: 10.1023/A:1026021217991