[1] Adam, O., T. Bischoff, and T. Schneider, 2016a: Seasonal and interannual variations of the energy flux equator and ITCZ. Part I: Zonally averaged ITCZ position. J. Climate, 29, 3219–3230. doi: 10.1175/JCLI-D-15-0512.1
[2] Adam, O., T. Bischoff, and T. Schneider, 2016b: Seasonal and interannual variations of the energy flux equator and ITCZ. Part II: Zonally varying shifts of the ITCZ. J. Climate, 29, 7281–7293. doi: 10.1175/JCLI-D-15-0710.1
[3] Afargan-Gerstman, H., and O. Adam, 2020: Nonlinear damping of ITCZ migrations due to Ekman ocean energy transport. Geophys. Res. Lett., 47, e2019GL086445. doi: 10.1029/2019GL086445
[4] Albrecht, B. A., 1989: Aerosols, cloud microphysics, and fractio-nal cloudiness. Science, 245, 1227–1230. doi: 10.1126/science.245.4923.1227
[5] Allen, R. J., A. T. Evan, and B. B. B. Booth, 2015: Interhemispheric aerosol radiative forcing and tropical precipitation shifts during the late twentieth century. J. Climate, 28, 8219–8246. doi: 10.1175/JCLI-D-15-0148.1
[6] Avery, M. A., D. J. Westberg, H. E. Fuelberg, et al., 2001: Chemical transport across the ITCZ in the central Pacific during an El Niño–Southern Oscillation cold phase event in March–April 1999. J. Geophys. Res. Atmos., 106, 32,539–32,553. doi: 10.1029/2001JD000728
[7] Bacmeister, J. T., M. J. Suarez, and F. R. Robertson, 2006: Rain reevaporation, boundary layer–convection interactions, and Pacific rainfall patterns in an AGCM. J. Atmos. Sci., 63, 3383–3403. doi: 10.1175/JAS3791.1
[8] Bellucci, A., S. Gualdi, and A. Navarra, 2010: The double-ITCZ syndrome in coupled general circulation models: The role of large-scale vertical circulation regimes. J. Climate, 23, 1127–1145. doi: 10.1175/2009JCLI3002.1
[9] Biasutti, M., and A. Giannini, 2006: Robust Sahel drying in response to late 20th century forcings. Geophys. Res. Lett., 33, L11706. doi: 10.1029/2006GL026067
[10] Biasutti, M., and A. Voigt, 2020: Seasonal and CO2-induced shifts of the ITCZ: Testing energetic controls in idealized simulations with comprehensive models. J. Climate, 33, 2853–2870. doi: 10.1175/JCLI-D-19-0602.1
[11] Biasutti, M., A. Voigt, W. R. Boos, et al., 2018: Global energetics and local physics as drivers of past, present and future monsoons. Nat. Geosci., 11, 392–400. doi: 10.1038/s41561-018-0137-1
[12] Bischoff, T., and T. Schneider, 2014: Energetic constraints on the position of the intertropical convergence zone. J. Climate, 27, 4937–4951. doi: 10.1175/JCLI-D-13-00650.1
[13] Bischoff, T., and T. Schneider, 2016: The equatorial energy balance, ITCZ position, and double-ITCZ bifurcations. J. Climate, 29, 2997–3013. doi: 10.1175/JCLI-D-15-0328.1
[14] Bollasina, M. A., Y. Ming, and V. Ramaswamy, 2011: Anthropogenic aerosols and the weakening of the South Asian summer monsoon. Science, 334, 502–505. doi: 10.1126/science.1204994
[15] Bony, S., J.-L. Dufresne, H. Le Treut, et al., 2004: On dynamic and thermodynamic components of cloud changes. Climate Dyn., 22, 71–86. doi: 10.1007/s00382-003-0369-6
[16] Boos, W. R., and R. L. Korty, 2016: Regional energy budget control of the intertropical convergence zone and application to mid-Holocene rainfall. Nat. Geosci., 9, 892–897. doi: 10.1038/ngeo2833
[17] Broccoli, A. J., K. A. Dahl, and R. J. Stouffer, 2006: Response of the ITCZ to Northern Hemisphere cooling. Geophys. Res. Lett., 33, L01702. doi: 10.1029/2005GL024546
[18] Cheng, H., A. Sinha, X. F. Wang, et al., 2012: The Global Paleomonsoon as seen through speleothem records from Asia and the Americas. Climate Dyn., 39, 1045–1062. doi: 10.1007/s00382-012-1363-7
[19] Chiang, J. C. H., and C. M. Bitz, 2005: Influence of high latitude ice cover on the marine Intertropical Convergence Zone. Climate Dyn., 25, 477–496. doi: 10.1007/s00382-005-0040-5
[20] Chikira, M., 2010: A cumulus parameterization with state-dependent entrainment rate. Part II: Impact on climatology in a general circulation model. J. Atmos. Sci., 67, 2194–2211. doi: 10.1175/2010JAS3317.1
[21] Chung, E.-S., and B. J. Soden, 2017: Hemispheric climate shifts driven by anthropogenic aerosol–cloud interactions. Nat. Geosci., 10, 566–571. doi: 10.1038/ngeo2988
[22] Chung, S. H., and J. H. Seinfeld, 2005: Climate response of direct radiative forcing of anthropogenic black carbon. J. Geophys. Res. Atmos., 110, D11102. doi: 10.1029/2004JD005441
[23] Donohoe, A., J. Marshall, D. Ferreira, et al., 2013: The relationship between ITCZ location and cross-equatorial atmospheric heat transport: From the seasonal cycle to the Last Glacial Maximum. J. Climate, 26, 3597–3618. doi: 10.1175/JCLI-D-12-00467.1
[24] Donohoe, A., J. Marshall, D. Ferreira, et al., 2014: The interannual variability of tropical precipitation and interhemispheric energy transport. J. Climate, 27, 3377–3392. doi: 10.1175/JCLI-D-13-00499.1
[25] Dunne, J. P., L. W. Horowitz, A. J. Adcroft, et al., 2020: The GFDL Earth System Model Version 4.1 (GFDL-ESM 4.1): Overall coupled model description and simulation characteristics. J. Adv. Model. Earth Syst., 12, e2019MS002015. doi: 10.1029/2019MS002015
[26] Frierson, D. M. W., Y.-T. Hwang, N. S. Fučkar, et al., 2013: Contribution of ocean overturning circulation to tropical rainfall peak in the Northern Hemisphere. Nat. Geosci., 6, 940–944. doi: 10.1038/ngeo1987
[27] Garrett, T. J., and C. F. Zhao, 2006: Increased Arctic cloud longwave emissivity associated with pollution from mid-latitudes. Nature, 440, 787–789. doi: 10.1038/nature04636
[28] Garrett, T. J., C. F. Zhao, and P. C. Novelli, 2010: Assessing the relative contributions of transport efficiency and scavenging to seasonal variability in Arctic aerosol. Tellus B Chem. Phys. Meteor., 62, 190–196. doi: 10.1111/j.1600-0889.2010.00453.x
[29] Green, B., and J. Marshall, 2017: Coupling of trade winds with ocean circulation damps ITCZ shifts. J. Climate, 30, 4395–4411. doi: 10.1175/JCLI-D-16-0818.1
[30] Green, B., J. Marshall, and J.-M. Campin, 2019: The ‘sticky’ ITCZ: ocean-moderated ITCZ shifts. Climate Dyn., 53, 1–19. doi: 10.1007/s00382-019-04623-5
[31] Hawcroft, M., J. M. Haywood, M. Collins, et al., 2017: Southern Ocean albedo, inter-hemispheric energy transports and the double ITCZ: global impacts of biases in a coupled model. Climate Dyn., 48, 2279–2295. doi: 10.1007/s00382-016-3205-5
[32] Hirota, N., and Y. N. Takayabu, 2013: Reproducibility of precipitation distribution over the tropical oceans in CMIP5 multi-climate models compared to CMIP3. Climate Dyn., 41, 2909–2920. doi: 10.1007/s00382-013-1839-0
[33] Hu, Q., and S. Feng, 2002: Interannual rainfall variations in the North American summer monsoon region: 1900–98. J. Climate, 15, 1189–1202. doi: 10.1175/1520-0442(2002)015<1189:IRVITN>2.0.CO;2
[34] Hwang, Y.-T., and D. M. W. Frierson, 2013: Link between the double-Intertropical Convergence Zone problem and cloud biases over the Southern Ocean. Proc. Natl. Acad. Sci. USA, 110, 4935–4940. doi: 10.1073/pnas.1213302110
[35] Hwang, Y.-T., D. M. W. Frierson, and S. M. Kang, 2013: Anthropogenic sulfate aerosol and the southward shift of tropical precipitation in the late 20th century. Geophys. Res. Lett., 40, 2845–2850. doi: 10.1002/grl.50502
[36] IPCC, 2013: Summary for policymakers. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Pa-nel on Climate Change, T. F. Stocker, D. Qin, G.-K. Plattner, et al., Eds., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp.
[37] Kang, S. M., I. M. Held, D. M. W. Frierson, et al., 2008: The response of the ITCZ to extratropical thermal forcing: Idealized slab-ocean experiments with a GCM. J. Climate, 21, 3521–3532. doi: 10.1175/2007JCLI2146.1
[38] Kang, S. M., D. M. W. Frierson, and I. M. Held, 2009: The tropical response to extratropical thermal forcing in an idealized GCM: The importance of radiative feedbacks and convective parameterization. J. Atmos. Sci., 66, 2812–2827. doi: 10.1175/2009JAS2924.1
[39] Kang, S. M., R. Seager, D. M. W. Frierson, et al., 2015: Croll revisited: Why is the northern hemisphere warmer than the southern hemisphere? Climate Dyn., 44, 1457–1472. doi: 10.1007/s00382-014-2147-z
[40] Kang, S. M., Y. Shin, and F. Codron, 2018a: The partitioning of poleward energy transport response between the atmosphere and Ekman flux to prescribed surface forcing in a simplified GCM. Geosci. Lett., 5, 22. doi: 10.1186/s40562-018-0124-9
[41] Kang, S. M., Y. Shin, and S.-P. Xie, 2018b: Extratropical forcing and tropical rainfall distribution: energetics framework and ocean Ekman advection. npj Climate Atmos. Sci., 1, 20172. doi: 10.1038/s41612-017-0004-6
[42] Kay, J. E., C. Wall, V. Yettella, et al., 2016: Global climate impacts of fixing the Southern Ocean shortwave radiation bias in the Community Earth System Model (CESM). J. Climate, 29, 4617–4636. doi: 10.1175/JCLI-D-15-0358.1
[43] Krishnamurti, T. N., L. Stefanova, and V. Misra, 2013: Tropical Meteorology: An Introduction. Springer, New York, NY, USA, 423 pp, doi: 10.1007/978-1-4614-7409-8.
[44] Kristiansen, N. I., A. Stohl, D. J. L. Olivié, et al., 2016: Evaluation of observed and modelled aerosol lifetimes using radioactive tracers of opportunity and an ensemble of 19 global models. Atmos. Chem. Phys., 16, 3525–3561. doi: 10.5194/acp-16-3525-2016
[45] Landu, K., L. R. Leung, S. Hagos, et al., 2014: The dependence of ITCZ structure on model resolution and dynamical core in aquaplanet simulations. J. Climate, 27, 2375–2385. doi: 10.1175/JCLI-D-13-00269.1
[46] Li, G., and S.-P. Xie, 2014: Tropical biases in CMIP5 multimodel ensemble: The excessive equatorial Pacific cold tongue and double ITCZ problems. J. Climate, 27, 1765–1780. doi: 10.1175/JCLI-D-13-00337.1
[47] Li, Z. Q., W. K.-M. Lau, V. Ramanathan, et al., 2016: Aerosol and monsoon climate interactions over Asia. Rev. Geophys., 54, 866–929. doi: 10.1002/2015RG000500
[48] Lin, J.-L., 2007: The double-ITCZ problem in IPCC AR4 coupled GCMs: Ocean–atmosphere feedback analysis. J. Climate, 20, 4497–4525. doi: 10.1175/JCLI4272.1
[49] Lin, Y. L., X. M. Huang, Y. S. Liang, et al., 2020: Community Integrated Earth System Model (CIESM): Description and evaluation. J. Adv. Model. Earth Syst., 12, e2019MS002036. doi: 10.1029/2019MS002036
[50] Lindzen, R. S., and S. Nigam, 1987: On the role of sea surface temperature gradients in forcing low-level winds and convergence in the tropics. J. Atmos. Sci., 44, 2418–2436. doi: 10.1175/1520-0469(1987)044<2418:OTROSS>2.0.CO;2
[51] Mahajan, S., K. J. Evans, J. J. Hack, et al., 2013: Linearity of climate response to increases in black carbon aerosols. J. Climate, 26, 8223–8237. doi: 10.1175/JCLI-D-12-00715.1
[52] Marshall, J., A. Donohoe, D. Ferreira, et al., 2014: The ocean’s role in setting the mean position of the Inter-Tropical Convergence Zone. Climate Dyn., 42, 1967–1979. doi: 10.1007/s00382-013-1767-z
[53] Masunaga, H., and T. S. L’Ecuyer, 2010: The southeast Pacific warm band and double ITCZ. J. Climate, 23, 1189–1208. doi: 10.1175/2009JCLI3124.1
[54] Mitchell, T. P., and J. M. Wallace, 1992: The annual cycle in equatorial convection and sea surface temperature. J. Climate, 5, 1140–1156. doi: 10.1175/1520-0442(1992)005<1140:TACIEC>2.0.CO;2
[55] Möbis, B., and B. Stevens, 2012: Factors controlling the position of the Intertropical Convergence Zone on an aquaplanet. J. Adv. Model. Earth Syst., 4, M00A04. doi: 10.1029/2012MS000199
[56] Moreno-Chamarro, E., J. Marshall, and T. L. Delworth, 2020: Linking ITCZ migrations to the AMOC and North Atlantic/Pacific SST decadal variability. J. Climate, 33, 893–905. doi: 10.1175/JCLI-D-19-0258.1
[57] Ocko, I. B., V. Ramaswamy, and Y. Ming, 2014: Contrasting climate responses to the scattering and absorbing features of anthropogenic aerosol forcings. J. Climate, 27, 5329–5345. doi: 10.1175/JCLI-D-13-00401.1
[58] Oueslati, B., and G. Bellon, 2013: Convective entrainment and large-scale organization of tropical precipitation: Sensitivity of the CNRM-CM5 hierarchy of models. J. Climate, 26, 2931–2946. doi: 10.1175/JCLI-D-12-00314.1
[59] Oueslati, B., and G. Bellon, 2015: The double ITCZ bias in CMIP5 models: interaction between SST, large-scale circulation and precipitation. Climate Dyn., 44, 585–607. doi: 10.1007/s00382-015-2468-6
[60] Philander, S. G. H., D. Gu, G. Lambert, et al., 1996: Why the ITCZ is mostly north of the equator. J. Climate, 9, 2958–2972. doi: 10.1175/1520-0442(1996)009<2958:WTIIMN>2.0.CO;2
[61] Qian, C., and T. J. Zhou, 2014: Multidecadal variability of North China aridity and its relationship to PDO during 1900–2010. J. Climate, 27, 1210–1222. doi: 10.1175/JCLI-D-13-00235.1
[62] Qin, Y., and Y. L. Lin, 2018: Alleviated double ITCZ problem in the NCAR CESM1: A new cloud scheme and the working mechanisms. J. Adv. Model. Earth Syst., 10, 2318–2332. doi: 10.1029/2018MS001343
[63] Riehl, H., 1979: Climate and Weather in the Tropics. Academic Press, London, UK and New York, NY, USA, 611 pp.
[64] Samanta, D., K. B. Karnauskas, and N. F. Goodkin, 2019: Tropical Pacific SST and ITCZ biases in climate models: Double trouble for future rainfall projections? Geophys. Res. Lett., 46, 2242–2252. doi: 10.1029/2018GL081363
[65] Schneider, T., 2017: Feedback of atmosphere-ocean coupling on shifts of the Intertropical Convergence Zone. Geophys. Res. Lett., 44, 11,644–11,653. doi: 10.1002/2017GL075817
[66] Schneider, T., T. Bischoff, and G. H. Haug, 2014: Migrations and dynamics of the intertropical convergence zone. Nature, 513, 45–53. doi: 10.1038/nature13636
[67] Song, F. F., and G. J. Zhang, 2016: Effects of southeastern Pacific sea surface temperature on the double-ITCZ bias in NCAR CESM1. J. Climate, 29, 7417–7433. doi: 10.1175/JCLI-D-15-0852.1
[68] Song, F. F., and G. J. Zhang, 2017: Impact of tropical SSTs in the North Atlantic and southeastern Pacific on the eastern Pacific ITCZ. J. Climate, 30, 1291–1305. doi: 10.1175/JCLI-D-16-0310.1
[69] Song, F. F., and G. J. Zhang, 2020: The impacts of horizontal resolution on the seasonally dependent biases of the northeastern Pacific ITCZ in coupled climate models. J. Climate, 33, 941–957. doi: 10.1175/JCLI-D-19-0399.1
[70] Song, F. F., T. J. Zhou, and Y. Qian, 2014: Responses of East Asian summer monsoon to natural and anthropogenic forcings in the 17 latest CMIP5 models. Geophys. Res. Lett., 41, 596–603. doi: 10.1002/2013GL058705
[71] Song, F. F., L. R. Leung, J. Lu, et al., 2018a: Future changes in seasonality of the North Pacific and North Atlantic subtropical highs. Geophys. Res. Lett., 45, 11,959–11,968. doi: 10.1029/2018GL079940
[72] Song, F. F., L. R. Leung, J. Lu, et al., 2018b: Seasonally dependent responses of subtropical highs and tropical rainfall to anthropogenic warming. Nat. Climate Change, 8, 787–792. doi: 10.1038/s41558-018-0244-4
[73] Song, F. F., J. Lu, L. R. Leung, et al., 2020: Contrasting phase changes of precipitation annual cycle between land and ocean under global warming. Geophys. Res. Lett., 47, e2020GL090327. doi: 10.1029/2020GL090327
[74] Song, F. F., L. R. Leung, J. Lu, et al., 2021: Emergence of seasonal delay of tropical rainfall during 1979–2019. Nat. Climate Change, 11, 605–612, doi: 10.1038/s41558-021-01066-x.
[75] Song, X. L., and G. J. Zhang, 2018: The roles of convection parameterization in the formation of double ITCZ syndrome in the NCAR CESM: I. Atmospheric processes. J. Adv. Model. Earth Syst., 10, 842–866. doi: 10.1002/2017MS001191
[76] Stephens, G. L., M. Z. Hakuba, M. Hawcroft, et al., 2016: The curious nature of the hemispheric symmetry of the Earth’s water and energy balances. Curr. Climate Change Rep., 2, 135–147. doi: 10.1007/s40641-016-0043-9
[77] Suzuki, K., and T. Takemura, 2019: Perturbations to global energy budget due to absorbing and scattering aerosols. J. Geophys. Res. Atmos., 124, 2194–2209. doi: 10.1029/2018JD029808
[78] Takayabu, Y. N., S. Shige, W.-K. Tao, et al., 2010: Shallow and deep latent heating modes over tropical oceans observed with TRMM PR spectral latent heating data. J. Climate, 23, 2030–2046. doi: 10.1175/2009JCLI3110.1
[79] Talib, J., S. J. Woolnough, N. P. Klingaman, et al., 2020: The effect of atmosphere-ocean coupling on the sensitivity of the ITCZ to convective mixing. J. Adv. Model. Earth Syst., 12, e2020MS002322. doi: 10.1029/2020MS002322
[80] Tian, B. J., and X. Y. Dong, 2020: The double-ITCZ bias in CMIP3, CMIP5, and CMIP6 models based on annual mean precipitation. Geophys. Res. Lett., 47, e2020GL087232. doi: 10.1029/2020GL087232
[81] Tomas, R. A., and P. J. Webster, 1997: The role of inertial instability in determining the location and strength of near-equatorial convection. Quart. J. Roy. Meteor. Soc., 123, 1445–1482. doi: 10.1002/qj.49712354202
[82] Twomey, S., 1977: The influence of pollution on the shortwave albedo of clouds. J. Atmos. Sci., 34, 1149–1152. doi: 10.1175/1520-0469(1977)034<1149:TIOPOT>2.0.CO;2
[83] Voigt, A., M. Biasutti, J. Scheff, et al., 2016: The tropical rain belts with an annual cycle and a continent model intercomparison project: TRACMIP. J. Adv. Model. Earth Syst., 8, 1868–1891. doi: 10.1002/2016MS000748
[84] Voigt, A., R. Pincus, B. Stevens, et al., 2017: Fast and slow shifts of the zonal-mean intertropical convergence zone in response to an idealized anthropogenic aerosol. J. Adv. Model. Earth Syst., 9, 870–892. doi: 10.1002/2016MS000902
[85] Waliser, D. E., and C. Gautier, 1993: A satellite-derived climatology of the ITCZ. J. Climate, 6, 2162–2174. doi: 10.1175/1520-0442(1993)006<2162:ASDCOT>2.0.CO;2
[86] Wang, C., 2015: Anthropogenic aerosols and the distribution of past large-scale precipitation change. Geophys. Res. Lett., 42, 10,876–10,884. doi: 10.1002/2015GL066416
[87] Wang, P. X., B. Wang, H. Cheng, et al., 2014: The global monsoon across timescales: coherent variability of regional monsoons. Climate Past, 10, 2007–2052. doi: 10.5194/cp-10-2007-2014
[88] Wang, Z. W., 2011: Simulation of radiative forcing of typical aerosols and their effects on climate. Ph.D. dissertation, Chinese Academy of Meteorological Sciences, China, 172 pp. (in Chinese)
[89] Wei, H.-H., and S. Bordoni, 2018: Energetic constraints on the ITCZ position in idealized simulations with a seasonal cycle. J. Adv. Model. Earth Syst., 10, 1708–1725. doi: 10.1029/2018MS001313
[90] Wodzicki, K. R., and A. D. Rapp, 2016: Long-term characterization of the Pacific ITCZ using TRMM, GPCP, and ERA-Interim. J. Geophys. Res. Atmos., 121, 3153–3170. doi: 10.1002/2015JD024458
[91] Wodzicki, K. R., and A. D. Rapp, 2020: Variations in precipitating convective feature populations with ITCZ width in the Pacific Ocean. J. Climate, 33, 4391–4401. doi: 10.1175/JCLI-D-19-0689.1
[92] Woelfle, M. D., C. S. Bretherton, C. Hannay, et al., 2019: Evolution of the double-ITCZ bias through CESM2 development. J. Adv. Model. Earth Syst., 11, 1873–1893. doi: 10.1029/2019MS001647
[93] Xiang, B. Q., M. Zhao, I. M. Held, et al., 2017: Predicting the severity of spurious “double ITCZ” problem in CMIP5 coupled models from AMIP simulations. Geophys. Res. Lett., 44, 1520–1527. doi: 10.1002/2016GL071992
[94] Xie, S.-P., 2004: The shape of continents, air-sea interaction, and the rising branch of the Hadley circulation. The Hadley Circulation: Present, Past and Future, H. F. Diaz, and R. S. Bradley, Eds., Springer, Dordrecht, 121–152, doi: 10.1007/978-1-4020-2944-8_5.
[95] Xie, S.-P., and S. G. H. Philander, 1994: A coupled ocean-atmosphere model of relevance to the ITCZ in the eastern Pacific. Tellus A Dyn. Meteor. Oceanogr., 46, 340–350. doi: 10.3402/tellusa.v46i4.15484
[96] Xu, H., Y. P. Song, Y. Goldsmith, et al., 2019: Meridional ITCZ shifts modulate tropical/subtropical Asian monsoon rainfall. Sci. Bull., 64, 1737–1739. doi: 10.1016/j.scib.2019.09.025
[97] Xu, K.-M., and A. N. Cheng, 2013: Evaluating low-cloud simulation from an upgraded multiscale modeling framework model. Part I: Sensitivity to spatial resolution and climatology. J. Climate, 26, 5717–5740. doi: 10.1175/JCLI-D-12-00200.1
[98] Yancheva, G., N. R. Nowaczyk, J. Mingram, et al., 2007: Influence of the intertropical convergence zone on the East Asian monsoon. Nature, 445, 74–77. doi: 10.1038/nature05431
[99] Yang, X., C. F. Zhao, L. J. Zhou, et al., 2016: Distinct impact of different types of aerosols on surface solar radiation in China. J. Geophys. Res. Atmos., 121, 6459–6471. doi: 10.1002/2016JD024938
[100] Zhang, C. D., 2001: Double ITCZs. J. Geophys. Res. Atmos., 106, 11,785–11,792. doi: 10.1029/2001JD900046
[101] Zhang, G. J., X. L. Song, and Y. Wang, 2019: The double ITCZ syndrome in GCMs: A coupled feedback problem among convection, clouds, atmospheric and ocean circulations. Atmos. Res., 229, 255–268. doi: 10.1016/j.atmosres.2019.06.023
[102] Zhang, H., S. Y. Zhao, Z. L. Wang, et al., 2016: The updated effective radiative forcing of major anthropogenic aerosols and their effects on global climate at present and in the future. Int. J. Climatol., 36, 4029–4044. doi: 10.1002/joc.4613
[103] Zhang, R., and T. L. Delworth, 2005: Simulated tropical response to a substantial weakening of the Atlantic thermohaline circulation. J. Climate, 18, 1853–1860. doi: 10.1175/JCLI3460.1
[104] Zhao, C. F., and T. J. Garrett, 2015: Effects of Arctic haze on surface cloud radiative forcing. Geophys. Res. Lett., 42, 557–564. doi: 10.1002/2014GL062015
[105] Zhao, S. Y., 2015: Study on aerosol effective radiative forcing and their effects on global climate especially on terrestrial aridity. Ph.D. dissertation, University of Chinese Academy of Sciences, China, 131 pp. (in Chinese)
[106] Zhao, S. Y., and K. Suzuki, 2019: Differing impacts of black carbon and sulfate aerosols on global precipitation and the ITCZ location via atmosphere and ocean energy perturbations. J. Climate, 32, 5567–5582. doi: 10.1175/JCLI-D-18-0616.1
[107] Zhao, S. Y., and K. Suzuki, 2021: Exploring the impacts of aerosols on ITCZ position through altering different autoconversion schemes and cumulus parameterizations. J. Geophys. Res. Atmos., 126, e2021JD034803. doi: 10.1029/2021JD034803
[108] Zhou, C., H. Zhang, S. Y. Zhao, et al., 2018: On effective radiative forcing of partial internally and externally mixed aerosols and their effects on global climate. J. Geophys. Res. Atmos., 123, 401–423. doi: 10.1002/2017JD027603