[1] Ahlqvist, O., 2005: Using uncertain conceptual spaces to translate between land cover categories. Int. J. Geogr. Inf. Sci., 19, 831–857. doi: 10.1080/13658810500106729
[2] Bai, Y., M. Feng, H. Jiang, et al., 2014: Assessing consistency of five global land cover data sets in China. Remote Sens., 6, 8739–8759. doi: 10.3390/rs6098739
[3] Bartholomé, E., and A. S. Belward, 2005: GLC2000: A new approach to global land cover mapping from earth observation data. Int. J. Remote Sens., 26, 1959–1977. doi: 10.1080/01431160412331291297
[4] Bicheron, P., P. Defourny, C. Brockmann, et al., 2008: GlobCover: Products description and validation report. MEDIAS-France, Toulouse, 1–46.
[5] Bontemps, S., P. Defourny, E. Van Bogaert, et al., 2011: GLOBCOVER 2009 products description and validation report. European Space Agency, Frascati, Italy, 1–51.
[6] Chen, J., J. Chen, A. P. Liao, et al., 2015: Global land cover mapping at 30 m resolution: A POK-based operational approach. ISPRS J. Photogramm. Remote Sens., 103, 7–27. doi: 10.1016/j.isprsjprs.2014.09.002
[7] Comber, A. J., 2013: Geographically weighted methods for estimating local surfaces of overall, user and producer accuracies. Remote Sens. Lett., 4, 373–380. doi: 10.1080/2150704X.2012.736694
[8] Comber, A., C. Brunsdon, M. Charlton, et al., 2017: Geographically weighted correspondence matrices for local error reporting and change analyses: Mapping the spatial distribution of errors and change. Remote Sens. Lett., 8, 234–243. doi: 10.1080/2150704X.2016.1258126
[9] Defourny, P., S. Bontemps, L. Schouten, et al., 2011: GLOBCOVER 2005 and GLOBCOVER 2009 Validation: Learnt lessons. Proceedings of GOFC-GOLD Global Land Cover & Change Validation Workshop, Laxenburg, Austria.
[10] Defourny, P., G. Kirches, C. Brockmann, et al., 2016: Land cover CCI: Product user guide version 2. Available online at http://maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-PUG-v2.5.pdf. Accessed October 5, 2019.
[11] Findell, K. L., E. Shevliakova, P. C. D. Milly, et al., 2007: Modeled impact of anthropogenic land cover change on climate. J. Climate, 20, 3621–3634. doi: 10.1175/JCLI4185.1
[12] Foody, G. M., 2002: Status of land cover classification accuracy assessment. Remote Sens. Environ., 80, 185–201. doi: 10.1016/S0034-4257(01)00295-4
[13] Foody, G. M., 2005: Local characterization of thematic classification accuracy through spatially constrained confusion matrices. Int. J. Remote Sens., 26, 1217–1228. doi: 10.1080/01431160512331326521
[14] Friedl, M. A., D. Sulla-Menashe, B. Tan, et al., 2010: Modis Collection 5 global land cover: Algorithm refinements and characterization of new datasets. Remote Sens. Environ., 114, 168–182. doi: 10.1016/j.rse.2009.08.016
[15] Fritz, S., and L. See, 2008: Identifying and quantifying uncertainty and spatial disagreement in the comparison of Global Land Cover for different applications. Global Change Biol., 14, 1057–1075. doi: 10.1111/j.1365-2486.2007.01519.x
[16] Fritz, S., I. McCallum, C. Schill, et al., 2009: Geo-Wiki.Org: The use of crowdsourcing to improve global land cover. Remote Sens., 1, 345–354. doi: 10.3390/rs1030345
[17] Gao, H., and G.-S. Jia, 2012: Spatial and quantitative comparison of satellite-derived land cover products over China. Atmos. Oceanic Sci. Lett., 5, 426–434. doi: 10.1080/16742834.2012.11447026
[18] Gao, H., and G. S. Jia, 2013: Assessing disagreement and tolerance of misclassification of satellite-derived land cover products used in WRF model applications. Adv. Atmos. Sci., 30, 125–141. doi: 10.1007/s00376-012-2037-4
[19] Ge, J. J., J. G. Qi, B. M. Lofgren, et al., 2007: Impacts of land use/cover classification accuracy on regional climate simulations. J. Geophys. Res. Atmos., 112, D05107. doi: 10.1029/2006JD007404
[20] Gong, P., J. Wang, L. Yu, et al., 2013: Finer resolution observation and monitoring of global land cover: First mapping results with Landsat TM and ETM+ data. Int. J. Remote Sens., 34, 2607–2654. doi: 10.1080/01431161.2012.748992
[21] Hansen, M. C., R. S. Defries, J. R. G. Townshend, et al., 2000: Global land cover classification at 1 km spatial resolution using a classification tree approach. Int. J. Remote Sens., 21, 1331–1364. doi: 10.1080/014311600210209
[22] Herold, M., C. E. Woodcock, A. Di Gregorio, et al., 2006: A joint initiative for harmonization and validation of land cover datasets. IEEE Trans. Geosci. Remote Sens., 44, 1719–1727. doi: 10.1109/TGRS.2006.871219
[23] Herold, M., P. Mayaux, C. E. Woodcock, et al., 2008: Some challenges in global land cover mapping: An assessment of agreement and accuracy in existing 1 km datasets. Remote Sens. Environ., 112, 2538–2556. doi: 10.1016/j.rse.2007.11.013
[24] Hua, T., W. W. Zhao, Y. X. Liu, et al., 2018: Spatial consistency assessments for global land-cover datasets: A comparison among GLC2000, CCI LC, MCD12, GLOBCOVER and GLCNMO. Remote Sens., 10, 1846. doi: 10.3390/rs10111846
[25] Iwao, K., K. Nishida, T. Kinoshita, et al., 2006: Validating land cover maps with Degree Confluence Project information. Geophys. Res. Lett., 33, L23404. doi: 10.1029/2006gl027768
[26] Kaptué Tchuenté, A. T., J.-L. Roujean, and S. M. De Jong, 2011: Comparison and relative quality assessment of the GLC2000, GLOBCOVER, MODIS and ECOCLIMAP land cover data sets at the African continental scale. Int. J. Appl. Earth Obs. Geoinf., 13, 207–219. doi: 10.1016/j.jag.2010.11.005
[27] Madhusoodhanan, C. G., K. G. Sreeja, and T. I. Eldho, 2017: Assessment of uncertainties in global land cover products for hydro-climate modeling in India. Water Resour. Res., 53, 1713–1734. doi: 10.1002/2016WR020193
[28] Mayaux, P., H. Eva, J. Gallego, et al., 2006: Validation of the global land cover 2000 map. IEEE Trans. Geosci. Remote Sens., 44, 1728–1739. doi: 10.1109/TGRS.2006.864370
[29] McCallum, I., M. Obersteiner, S. Nilsson, et al., 2006: A spatial comparison of four satellite derived 1 km global land cover datasets. Int. J. Appl. Earth Obs. Geoinf., 8, 246–255. doi: 10.1016/j.jag.2005.12.002
[30] Nakaegawa, T., 2011: Uncertainty in land cover datasets for glo-bal land-surface models derived from 1-km global land cover datasets. Hydrol. Process., 25, 2703–2714. doi: 10.1002/hyp.8011
[31] Neumann, K., M. Herold, A. Hartley, et al., 2007: Comparative assessment of CORINE2000 and GLC2000: Spatial analysis of land cover data for Europe. Int. J. Appl. Earth Obs. Geoinf., 9, 425–437. doi: 10.1016/j.jag.2007.02.004
[32] Olofsson, P., S. V. Stehman, C. E. Woodcock, et al., 2012: A glo-bal land-cover validation data set, part I: Fundamental design principles. Int. J. Remote Sens., 33, 5768–5788. doi: 10.1080/01431161.2012.674230
[33] Pérez-Hoyos, A., F. J. García-Haro, and J. San-Miguel-Ayanz, 2012: Conventional and fuzzy comparisons of large scale land cover products: Application to CORINE, GLC2000, MODIS and GlobCover in Europe. ISPRS J. Photogramm. Remote Sens., 74, 185–201. doi: 10.1016/j.isprsjprs.2012.09.006
[34] Potapov, P., M. C. Hansen, A. M. Gerrand, et al., 2011: The glo-bal Landsat imagery database for the FAO FRA remote sensing survey. Int. J. Digit. Earth, 4, 2–21. doi: 10.1080/17538947.2010.492244
[35] Santos-Alamillos, F. J., D. Pozo-Vázquez, J. A. Ruiz-Arias, et al., 2015: Influence of land-use misrepresentation on the accuracy of WRF wind estimates: Evaluation of GLCC and CORINE land-use maps in southern Spain. Atmos. Res., 157, 17–28. doi: 10.1016/j.atmosres.2015.01.006
[36] Schultz, M., N. E. Tsendbazar, M. Herold, et al., 2015: Utilizing the global land cover 2000 reference dataset for a comparative accuracy assessment of 1 km global land cover maps. Proceedings of the 36th International Symposium on Remote Sensing of Environment, ISPRS—The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Berlin, 503–510.
[37] See, L., D. Schepaschenko, M. Lesiv, et al., 2015: Building a hybrid land cover map with crowdsourcing and geographically weighted regression. ISPRS J. Photogramm. Remote Sens., 103, 48–56. doi: 10.1016/j.isprsjprs.2014.06.016
[38] Sertel, E., A. Robock, and C. Ormeci, 2010: Impacts of land cover data quality on regional climate simulations. Int. J. Climatol., 30, 1942–1953. doi: 10.1002/joc.2036
[39] Sterling, S. M., A. Ducharne, and J. Polcher, 2013: The impact of global land-cover change on the terrestrial water cycle. Nat. Clim. Change, 3, 385–390. doi: 10.1038/nclimate1690
[40] Tateishi, R., B. Uriyangqai, H. Al-Bilbisi, et al., 2011: Production of global land cover data—GLCNMO. Int. J. Digit. Earth, 4, 22–49. doi: 10.1080/17538941003777521
[41] Tateishi, R., N. T. Hoan, T. Kobayashi, et al., 2014: Production of global land cover data—GLCNMO2008. J. Geograp. Geol., 6, 99–123. doi: 10.5539/jgg.v6n3p99
[42] Tsendbazar, N.-E., S. de Bruin, S. Fritz, et al., 2015: Spatial accuracy assessment and integration of global land cover datasets. Remote Sens., 7, 15,804–15,821. doi: 10.3390/rs71215804
[43] Tsendbazar, N. E., S. de Bruin, B. Mora, et al., 2016: Comparative assessment of thematic accuracy of GLC maps for specific applications using existing reference data. Int. J. Appl. Earth Obs. Geoinf., 44, 124–135. doi: 10.1016/j.jag.2015.08.009
[44] Tsutsumida, N., and A. J. Comber, 2015: Measures of spatio–temporal accuracy for time series land cover data. Int. J. Appl. Earth Obs. Geoinf., 41, 46–55. doi: 10.1016/j.jag.2015.04.018
[45] Wickham, J., S. V. Stehman, L. Gass, et al., 2017: Thematic accuracy assessment of the 2011 National Land Cover Database (NLCD). Remote Sens. Environ., 191, 328–341. doi: 10.1016/j.rse.2016.12.026
[46] Yang, Y. K., P. F. Xiao, X. Z. Feng, et al., 2017: Accuracy assessment of seven global land cover datasets over China. ISPRS J. Photogramm. Remote Sens., 125, 156–173. doi: 10.1016/j.isprsjprs.2017.01.016
[47] Yu, L., X. X. Liu, Y. Y. Zhao, et al., 2018: Difficult to map regions in 30 m global land cover mapping determined with a common validation dataset. Int. J. Remote Sens., 39, 4077–4087. doi: 10.1080/01431161.2018.1455238
[48] Zhao, Y. Y., P. Gong, L. Yu, et al., 2014: Towards a common validation sample set for global land-cover mapping. Int. J. Remote Sens., 35, 4795–4814. doi: 10.1080/01431161.2014.930202