[1] Adler, R. F., G. J. Huffman, A. Chang, et al., 2003: The Version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeorol., 4, 1147–1167. doi: 10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2
[2] Alessandri, A., M. D. Felice, F.Catalano, et al., 2018: Grand European and Asian-Pacific multi-model seasonal forecasts: maximization of skill and of potential economical value to end-users. Climate Dyn., 50, 2719–2738. doi: 10.1007/s00382-017-3766-y
[3] Badr, H. S., B. F. Zaitchik, and S. D. Guikema, 2014: Application of statistical models to the prediction of seasonal rainfall anomalies over the Sahel. J. Appl. Meteor. Climatol., 53, 614–636. doi: 10.1175/JAMC-D-13-0181.1
[4] Bao, Q., X. F. Wu, J. X. Li, et al., 2019: Outlook for El Niño and the Indian Ocean Dipole in autumn–winter 2018–2019. Chinese Sci. Bull., 64, 73–78. (in Chinese) doi: 10.1360/N972018-00913
[5] Bergstra, J., R. Bardenet, Y. Bengio, et al., 2011: Algorithms for hyper-parameter optimization. Proceedings of the 24th International Conference on Neural Information Processing Systems, ACM, Granada, Spain, 2546–2554.
[6] Bett, P. E., A. A. Scaife, C. F. Li, et al., 2018: Seasonal forecasts of the summer 2016 Yangtze River basin rainfall. Adv. Atmos. Sci., 35, 918–926. doi: 10.1007/s00376-018-7210-y
[7] Breiman, L., 2001: Random forests. Mach. Learn., 45, 5–32. doi: 10.1023/A:1010933404324
[8] Chen, J.-L., and R.-H. Huang, 2008: Interannual and interdecadal variations of moisture transport by Asian summer monsoon and their association with droughts or floods in China. Chinese J. Geophys., 51, 352–359. (in Chinese) doi: 10.3321/j.issn:0001-5733.2008.02.007
[9] Chevuturi, A., A. G. Turner, S. J. Woolnough, et al., 2019: Indian summer monsoon onset forecast skill in the UK Met Office initialized coupled seasonal forecasting system (GloSea5-GC2). Climate Dyn., 52, 6599–6617. doi: 10.1007/s00382-018-4536-1
[10] Colin Cameron, A., and F. A. G. Windmeijer, 1997: An R-squared measure of goodness of fit for some common nonlinear regression models. J. Econom., 77, 329–342. doi: 10.1016/S0304-4076(96)01818-0
[11] Dee, D. P., S. M. Uppala, A. J. Simmons, et al., 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553–597. doi: 10.1002/qj.828
[12] Drucker, H., C. J. C. Burges, L. Kaufman, et al., 1996: Support vector regression machines. Proceedings of the 9th International Conference on Neural Information Processing Systems, MIT Press, Denver, CO, USA, 155–161.
[13] Fan, K., 2006: Atmospheric circulation in Southern Hemisphere and summer rainfall over Yangtze River valley. Chinese J. Geophys., 49, 599–606. doi: 10.1002/cjg2.873
[14] Friedman, J. H., 2001: Greedy function approximation: A gradient boosting machine. Ann. Statist., 29, 1189–1232. doi: 10.1214/aos/1013203451
[15] Friedman, J. H., 2002: Stochastic gradient boosting. Computat. Statist. Data Anal., 38, 367–378. doi: 10.1016/S0167-9473(01)00065-2
[16] Gao, M. N., B. Wang, J. Yang, et al., 2018: Are peak summer sultry heat wave days over the Yangtze–Huaihe River basin predictable? J. Climate, 31, 2185–2196. doi: 10.1175/JCLI-D-17-0342.1
[17] Goddard, L., S. J. Mason, S. E. Zebiak, et al., 2001: Current approaches to seasonal to interannual climate predictions. Int. J. Climatol., 21, 1111–1152. doi: 10.1002/joc.636
[18] Gong, D. Y., and C. H. Ho, 2002: Shift in the summer rainfall over the Yangtze River valley in the late 1970s. Geophys. Res. Lett., 29, 1436. doi: 10.1029/2001GL014523
[19] Ham, Y. G., J. H. Kim, and J. J. Luo, 2019: Deep learning for multi-year ENSO forecasts. Nature, 573, 568–572. doi: 10.1038/s41586-019-1559-7
[20] He, B., Q. Bao, X. C. Wang, et al., 2019: CAS FGOALS-f3-L Model datasets for CMIP6 historical Atmospheric Model Intercomparison Project simulation. Adv. Atmos. Sci., 36, 771–778. doi: 10.1007/s00376-019-9027-8
[21] Jia, X. J., and P. J. Zhu, 2010: Improving the seasonal forecast of summer precipitation in China using a dynamical–statistical approach. Atmos. Oceanic Sci. Lett., 3, 100–105. doi: 10.1080/16742834.2010.11446849
[22] Kirtman, B. P., D. Min, J. M. Infanti,, et al., 2014: The North American Multimodel Ensemble: Phase-1 seasonal-to-interannual prediction; phase-2 toward developing intraseasonal prediction. Bull. Amer. Meteor. Soc., 95, 585–601. doi: 10.1175/BAMS-D-12-00050.1
[23] Lee, J.-Y., S.-S. Lee, B. Wang, et al., 2013: Seasonal prediction and predictability of the Asian winter temperature variability. Climate Dyn., 41, 573–587. doi: 10.1007/s00382-012-1588-5
[24] Lever, J., M. Krzywinski, and N. Altman, 2016: Model selection and overfitting. Nat. Methods, 13, 703–704. doi: 10.1038/nmeth.3968
[25] Li, Q., F. Y. Wei, and D. L. Li, 2011: Interdecadal variation of East Asian summer monsoon and drought/flood distribution over eastern China in the last 159 years. J. Geogr. Sci., 21, 579–593. doi: 10.1007/s11442-011-0865-2
[26] Liaw, A., and M. Wiener, 2002: Classification and regression by random forest. R News, 2–3, 18–22.
[27] Lim, Y., J. Lee, H.-S. Oh, et al., 2015: Independent component regression for seasonal climate prediction: An efficient way to improve multimodel ensembles. Theor. Appl. Climatol., 119, 433–441. doi: 10.1007/s00704-014-1099-x
[28] MacLachlan, C., A. Arribas, K. A. Peterson, et al., 2015: Global seasonal forecast system version 5 (GloSea5): A high-resolution seasonal forecast system. Quart. J. Roy. Meteor. Soc., 141, 1072–1084. doi: 10.1002/qj.2396
[29] Nan, S. L., and J. P. Li, 2003: The relationship between the summer precipitation in the Yangtze River valley and the boreal spring Southern Hemisphere annular mode. Geophys. Res. Lett., 30, 2266. doi: 10.1029/2003GL018381
[30] Pang, Y. S., C. W. Zhu, and K. Liu, 2014: Analysis of stability of EOF modes in summer rainfall anomalies in China. Chinese J. Atmos. Sci., 38, 1137–1146. (in Chinese) doi: 10.3878/j.issn.1006-9895.1402.13274
[31] Pedregosa, F., G. Varoquaux, A. Gramfort, et al., 2011: Scikit-learn: Machine learning in python. J. Mach. Learn. Res., 12, 2825–2830.
[32] Picard, R. R., and R. D. Cook, 1984: Cross-validation of regression models. J. Amer. Statist. Assoc., 79, 575–583. doi: 10.1080/01621459.1984.10478083
[33] Pour, S. H., A. K. A. Wahab, and S. Shahid, 2020: Physical-empirical models for prediction of seasonal rainfall extremes of Peninsular Malaysia. Atmos. Res., 233, 104720. doi: 10.1016/j.atmosres.2019.104720
[34] Rana, S., J. Renwick, J. McGregor, et al., 2018: Seasonal prediction of winter precipitation anomalies over Central Southwest Asia: A canonical correlation analysis approach. J. Climate, 31, 727–741. doi: 10.1175/JCLI-D-17-0131.1
[35] Ren, H. L., Y. J. Wu, Q. Bao, et al., 2019: The China multi-model ensemble prediction system and its application to flood-season prediction in 2018. J. Meteor. Res., 33, 540–552. doi: 10.1007/s13351-019-8154-6
[36] Saha, M., P. Mitra, and R. S. Nanjundiah, 2017: Deep learning for predicting the monsoon over the homogeneous regions of India. J. Earth Syst. Sci., 126, 54. doi: 10.1007/s12040-017-0838-7
[37] Shen, B. Z., Z. D. Lin, R. Y. Lu, et al., 2011: Circulation anomalies associated with interannual variation of early- and late-summer precipitation in Northeast China. Sci. China Earth Sci., 54, 1095–1104. doi: 10.1007/s11430-011-4173-6
[38] Strazzo, S., D. C. Collins, A. Schepen, et al., 2019: Application of a hybrid statistical–dynamical system to seasonal prediction of North American temperature and precipitation. Mon.Wea.Rev., 147, 607–625. doi: 10.1175/MWR-D-18-0156.1
[39] Tao, S. Y., and S. Y. Xu, 1962: Some aspects of the circulation during the periods of the persistfnt drought and flood in Yantze and Hwai-ho valleys in summer. Acta Meteor. Sinica, 32, 1–10. (in Chinese) doi: 10.11676/qxxb1962.001
[40] Tetko, I. V., D. J. Livingstone, and A. I. Luik, 1995: Neural network studies. 1. Comparison of overfitting and overtraining. J. Chem. Inf. Comput. Sci., 35, 826–833. doi: 10.1021/ci00027a006
[41] Wang, B., J.-Y. Lee, I.-S. Kang, et al., 2009: Advance and prospectus of seasonal prediction: Assessment of the APCC/CliPAS 14-model ensemble retrospective seasonal prediction (1980–2004). Climate Dyn., 33, 93–117. doi: 10.1007/s00382-008-0460-0
[42] Wang, S. W., and J. H. Zhu, 2001: A review on seasonal climate prediction. Adv. Atmos. Sci., 18, 197–208. doi: 10.1007/s00376-001-0013-5
[43] Xing, W., B. Wang, and S.-Y. Yim, 2016: Long-lead seasonal prediction of China summer rainfall using an EOF–PLS regression-based methodology climate. J. Climate, 29, 1783–1796. doi: 10.1175/JCLI-D-15-0016.1
[44] Yang, S., Z. Q. Zhang, V. E. Kousky, et al., 2008: Simulations and seasonal prediction of the Asian summer monsoon in the NCEP Climate Forecast System. J. Climate, 21, 3755–3775. doi: 10.1175/2008JCLI1961.1
[45] Yin, Z. C., and H. J. Wang, 2016: Seasonal prediction of winter haze days in the north central North China Plain. Atmos. Chem. Phys., 16, 14843–14852. doi: 10.5194/acp-16-14843-2016
[46] Zeng, Z., W. W. Hsieh, A. Shabbara, et al., 2011: Seasonal prediction of winter extreme precipitation over Canada by support vector regression. Hydro. Earth Syst. Sci., 15, 65–74. doi: 10.5194/hess-15-65-2011
[47] Zhou, T. J., R. C. Yu, J. Zhang, et al., 2009: Why the western Pacific subtropical high has extended westward since the late 1970s. J. Climate, 22, 2199–2215. doi: 10.1175/2008JCLI2527.1
[48] Zhu, Z. W., T. Li, and J. H. He, 2014: Out-of-phase relationship between boreal spring and summer decadal rainfall changes in southern China. J. Climate, 27, 1083–1099. doi: 10.1175/JCLI-D-13-00180.1