[1] Adler, R. F., M. R. P. Sapiano, G. J. Huffman, et al., 2018: The Global Precipitation Climatology Project (GPCP) monthly analysis (new version 2.3) and a review of 2017 global precipitation. Atmosphere, 9, 138. doi: 10.3390/atmos9040138
[2] Ashok, K., S. K. Behera, S. A. Rao, et al., 2007: El Niño Modoki and its possible teleconnection. J. Geophys. Res. Oceans, 112, C11007. doi: 10.1029/2006jc003798
[3] Best, M. J., M. Pryor, D. B. Clark, et al., 2011: The Joint UK Land Environment Simulator (JULES), model description—Part 1: Energy and water fluxes. Geosci. Model Dev., 4, 677–699. doi: 10.5194/gmd-4-677-2011
[4] Bett, P. E., H. E. Thornton, J. F. Lockwood, et al., 2017: Skill and reliability of seasonal forecasts for the Chinese energy sector. J. Appl. Meteor., 56, 3099–3114. doi: 10.1175/jamc-d-17-0070.1
[5] Bett, P. E., A. A. Scaife, C. F. Li, et al., 2018: Seasonal forecasts of the summer 2016 Yangtze River basin rainfall. Adv. Atmos. Sci., 35, 918–926. doi: 10.1007/s00376-018-7210-y
[6] Bett, P. E., N. Martin, A. A. Scaife, et al., 2020: Seasonal rainfall forecasts for the Yangtze River basin of China in summer 2019 from an improved climate service. J. Meteor. Res., 34, 904–916. doi: 10.1007/s13351-020-0049-z
[7] Bowler, N. E., A. Arribas, S. E. Beare, et al., 2009: The local ETKF and SKEB: Upgrades to the MOGREPS short-range ensemble prediction system. Quart. J. Roy. Meteor. Soc., 135, 767–776. doi: 10.1002/qj.394
[8] Camp, J., M. Roberts, C. MacLachlan, et al., 2015: Seasonal forecasting of tropical storms using the Met Office GloSea5 seasonal forecast system. Quart. J. Roy. Meteor. Soc., 141, 2206–2219. doi: 10.1002/qj.2516
[9] Chan, J. C. L., 2000: Tropical cyclone activity over the western North Pacific associated with El Niño and La Niña events. J. Climate, 13, 2960–2972. doi: 10.1175/1520-0442(2000)013<2960:tcaotw>2.0.co;2
[10] Chen, G. Y., 1994: General circulation over Northern Hemisphere in 1993 and their impact on the weather and climate in China. Meteor. Mon., 20, 23–26. (in Chinese)
[11] Chen, R. D., Z. P. Wen, R. Y. Lu, et al., 2019: Causes of the extreme hot midsummer in Central and South China during 2017: Role of the western tropical Pacific warming. Adv. Atmos. Sci., 36, 465–478. doi: 10.1007/s00376-018-8177-4
[12] Chen, W., J.-K. Park, B.-W. Dong, et al., 2012: The relationship between El Niño and the western North Pacific summer climate in a coupled GCM: Role of the transition of El Niño decaying phases. J. Geophys. Res. Atmos., 117, D12111. doi: 10.1029/2011JD017385
[13] Chou, C., J. Y. Tu, and J. Y. Yu, 2003: Interannual variability of the western North Pacific summer monsoon: Differences between ENSO and non-ENSO years. J. Climate, 16, 2275–2287. doi: 10.1175/2761.1
[14] Chowdary, J. S., S. P. Xie, J. Y. Lee, et al., 2010: Predictability of summer Northwest Pacific climate in 11 coupled model hindcasts: Local and remote forcing. J. Geophys. Res. Atmos., 115, D22121. doi: 10.1029/2010jd014595
[15] Dee, D. P., S. M. Uppala, A. J. Simmons, et al., 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553–597. doi: 10.1002/qj.828
[16] Dong, X., F.-X. Fan, R.-P. Lin, et al., 2017: Simulation of the western North Pacific subtropical high in El Niño decaying summers by CMIP5 AGCMs. Atmos. Ocean. Sci. Lett., 10, 146–155. doi: 10.1080/16742834.2017.1272404
[17] Feng, J., W. Chen, C.-Y. Tam, et al., 2011: Different impacts of El Niño and El Niño Modoki on China rainfall in the decaying phases. Int. J. Climatol., 31, 2091–2101. doi: 10.1002/joc.2217
[18] Fu, Z. B., and J. Fletcher, 1985: Two patterns of equatorial warming associated with El Niño. Chinese Sci. Bull., 30, 1360–1364.
[19] Gao, H., T. Ding, and W. J. Li, 2017: The three-dimension intensity index for western Pacific subtropical high and its link to the anomaly of rain belt in eastern China. Chinese Sci. Bull., 62, 3643–3654. (in Chinese) doi: 10.1360/N972017-00280
[20] Hardiman, S. C., N. J. Dunstone, A. A. Scaife, et al., 2018: The asymmetric response of Yangtze River basin summer rainfall to El Niño/La Niña. Environ. Res. Lett., 13, 024015. doi: 10.1088/1748-9326/aaa172
[21] He, C., and T. J. Zhou, 2014: The two interannual variability modes of the western North Pacific subtropical high simulated by 28 CMIP5-AMIP models. Climate Dyn., 43, 2455–2469. doi: 10.1007/s00382-014-2068-x
[22] He, C., and T. J. Zhou, 2015: Responses of the western North Pacific subtropical high to global warming under RCP4.5 and RCP8.5 scenarios projected by 33 CMIP5 models: The dominance of tropical Indian Ocean–tropical western Pacific SST gradient. J. Climate, 28, 365–380. doi: 10.1175/jcli-d-13-00494.1
[23] He, C., T. J. Zhou, and B. Wu, 2015: The key oceanic regions responsible for the interannual variability of the western North Pacific subtropical high and associated mechanisms. J. Meteor. Res., 29, 562–575. doi: 10.1007/s13351-015-5037-3
[24] He, C., A. L. Lin, D. J. Gu, et al., 2018: Using eddy geopotential height to measure the western North Pacific subtropical high in a warming climate. Theor. Appl. Climatol., 131, 681–691. doi: 10.1007/s00704-016-2001-9
[25] Hoffmann, L., G. Günther, D. Li, et al., 2019: From ERA-Interim to ERA5: The considerable impact of ECMWF’s next-generation reanalysis on Lagrangian transport simulations. Atmos. Chem. Phys., 19, 3097–3124. doi: 10.5194/acp-19-3097-2019
[26] Hong, J.-S., S.-W. Yeh, and K.-H. Seo, 2018: Diagnosing physical mechanisms leading to pure heat waves versus pure tropical nights over the Korean Peninsula. J. Geophys. Res. Atmos., 123, 7149–7160. doi: 10.1029/2018JD028360
[27] Huang, R. H., J. L. Chen, L. Wang, et al., 2012: Characteristics, processes, and causes of the spatio-temporal variabilities of the East Asian monsoon system. Adv. Atmos. Sci., 29, 910–942. doi: 10.1007/s00376-012-2015-x
[28] Kosaka, Y., S.-P. Xie, N.-C. Lau, et al., 2013: Origin of seasonal predictability for summer climate over the northwestern Pacific. Proc. Natl. Acad. Sci. USA, 110, 7574–7579. doi: 10.1073/pnas.1215582110
[29] Lee, E.-J., S.-W. Yeh, J.-G. Jhun, et al., 2006: Seasonal change in anomalous WNPSH associated with the strong East Asian summer monsoon. Geophys. Res. Lett., 33, L21702. doi: 10.1029/2006GL027474
[30] Li, B. S., R. Q. Ding, J. P. Li, et al., 2018: Asymmetric response of predictability of East Asian summer monsoon to ENSO. SOLA, 14, 52–56. doi: 10.2151/sola.2018-009
[31] Li, C. F., R. Y. Lu, and B. W. Dong, 2012: Predictability of the western North Pacific summer climate demonstrated by the coupled models of ENSEMBLES. Climate Dyn., 39, 329–346. doi: 10.1007/s00382-011-1274-z
[32] Li, C. F., R. Y. Lu, and B. W. Dong, 2014: Predictability of the western North Pacific summer climate associated with different ENSO phases by ENSEMBLES multi-model seasonal forecasts. Climate Dyn., 43, 1829–1845. doi: 10.1007/s00382-013-2010-7
[33] Li, C. F., A. A. Scaife, R. Y. Lu, et al., 2016: Skillful seasonal prediction of Yangtze River valley summer rainfall. Environ. Res. Lett., 11, 094002. doi: 10.1088/1748-9326/11/9/094002
[34] Liu, Y. M., J. L. Hong, C. Liu, et al., 2013: Meiyu flooding of Huaihe River valley and anomaly of seasonal variation of subtropical anticyclone over the western Pacific. Chinese J. Atmos. Sci., 37, 439–450. (in Chinese) doi: 10.3878/j.issn.1006-9895.2012.12313
[35] Liu, Y. Y., W. J. Li, W. X. Ai, et al., 2012: Reconstruction and application of the monthly western Pacific subtropical high indices. J. Appl. Meteor. Sci., 23, 414–423. (in Chinese) doi: 10.3969/j.issn.1001-7313.2012.04.004
[36] Liu, Y. Y., W. J. Li, J. Q. Zuo, et al., 2014: Simulation and projection of the western Pacific subtropical high in CMIP5 models. J. Meteor. Res., 28, 327–340. doi: 10.1007/s13351-014-3151-2
[37] Lockwood, J. F., H. E. Thornton, N. Dunstone, et al., 2019: Skilful seasonal prediction of winter wind speeds in China. Climate Dyn., 53, 3937–3955. doi: 10.1007/s00382-019-04763-8
[38] Lu, B., A. A. Scaife, N. Dunstone, et al., 2017: Skillful seasonal predictions of winter precipitation over southern China. Environ. Res. Lett., 12, 074021. doi: 10.1088/1748-9326/aa739a
[39] Lu, R. Y., and B. W. Dong, 2001: Westward extension of North Pacific subtropical high in summer. J. Meteor. Soc. Japan, 79, 1229–1241. doi: 10.2151/jmsj.79.1229
[40] Lu, R. Y., Y. Li, and C. S. Ryu, 2008: Relationship between the zonal displacement of the western Pacific subtropical high and the dominant modes of low-tropospheric circulation in summer. Prog. Nat. Sci., 18, 161–165. doi: 10.1016/j.pnsc.2007.07.009
[41] MacLachlan, C., A. Arribas, K. A. Peterson, et al., 2015: Global Seasonal forecast system version 5 (GloSea5): A high-resolution seasonal forecast system. Quart. J. Roy. Meteor. Soc., 141, 1072–1084. doi: 10.1002/qj.2396
[42] Martin, G. M., A. Chevuturi, R. E. Comer, et al., 2019: Predictability of South China Sea summer monsoon onset. Adv. Atmos. Sci., 36, 253–260. doi: 10.1007/s00376-018-8100-z
[43] Martin, G. M., N. J. Dunstone, A. A. Scaife, et al., 2020: Predicting June mean rainfall in the middle/lower Yangtze River basin. Adv. Atmos. Sci., 37, 29–41. doi: 10.1007/s00376-019-9051-8
[44] Megann, A., D. Storkey, Y. Aksenov, et al., 2014: GO5.0: The joint NERC–Met Office NEMO global ocean model for use in coupled and forced applications. Geosci. Model Dev., 7, 1069–1092. doi: 10.5194/gmd-7-1069-2014
[45] Neelin, J. D., F.-F. Jin, and H.-H. Syu, 2000: Variations in ENSO phase locking. J. Climate, 13, 2570–2590. doi: 10.1175/1520-0442(2000)013<2570:viepl>2.0.co;2
[46] Niñomiya, K., and C. Kobayashi, 1998: Precipitation and moisture balance of the Asian summer monsoon in 1991. Part Ⅰ: Precipitation and major circulation systems. J. Meteor. Soc. Japan, 76, 855–877. doi: 10.2151/jmsj1965.76.6_855
[47] Niñomiya, K., and C. Kobayashi, 1999: Precipitation and moisture balance of the Asian summer monsoon in 1991. Part Ⅱ: Moisture transport and moisture balance. J. Meteor. Soc. Japan, 77, 77–99. doi: 10.2151/jmsj1965.77.1_77
[48] Qian, D. L., Z. Y. Guan, and W. Y. Tang, 2018: Joint impacts of SSTA in tropical Pacific and Indian oceans on variations of the WPSH. J. Meteor. Res., 32, 548–559. doi: 10.1007/s13351-018-7172-0
[49] Rae, J. G. L., H. T. Hewitt, A. B. Keen, et al., 2015: Development of Global Sea Ice 6.0 CICE configuration for the Met Office global coupled model. Geosci. Model Dev., 8, 2221–2230. doi: 10.5194/gmdd-8-2529-2015
[50] Rayner, N. A., D. E. Parker, E. B. Horton, et al., 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. Atmos., 108, 4407. doi: 10.1029/2002jd002670
[51] Ren, H.-L., and F.-F. Jin, 2011: Niño indices for two types of ENSO. Geophys. Res. Lett., 38, L04704. doi: 10.1029/2010gl046031
[52] Ren, H.-L., B. Lu, J. H. Wan, et al., 2018: Identification standard for ENSO events and its application to climate monitoring and prediction in China. J. Meteor. Res., 32, 923–936. doi: 10.1007/s13351-018-8078-6
[53] Ren, H.-L., F. Zheng, J.-J. Luo, et al., 2020: A review of research on tropical air–sea interaction, ENSO dynamics, and ENSO prediction in China. J. Meteor. Res., 34, 43–62. doi: 10.1007/s13351-020-9155-1
[54] Tao, S. Y., Q. Y. Zhang, and S. L. Zhang, 2001: An observational study on the behavior of the subtropical high over the West Pacific in summer. Acta Meteor. Sinica, 59, 747–758. (in Chinese) doi: 10.11676/qxxb2001.078
[55] Trenberth, K. E., and D. P. Stepaniak, 2001: Indices of El Niño evolution. J. Climate, 14, 1697–1701. doi: 10.1175/1520-0442(2001)014<1697:lioeno>2.0.co;2
[56] Valcke, S., 2013: The OASIS3 coupler: A European climate modelling community software. Geosci. Model Dev., 6, 373–388. doi: 10.5194/gmd-6-373-2013
[57] Walters, D., I. Boutle, M. Brooks, et al., 2017: The Met Office unified model global atmosphere 6.0/6.1 and JULES global land 6.0/6.1 configurations. Geosci. Model Dev., 10, 1487–1520. doi: 10.5194/gmd-10-1487-2017
[58] Walters, D., A. J. Baran, I. Boutle, et al., 2019: The Met Office unified model global atmosphere 7.0/7.1 and JULES global land 7.0 configurations. Geosci. Model Dev., 12, 1909–1963. doi: 10.5194/gmd-12-1909-2019
[59] Wang, B., and Q. Zhang, 2002: Pacific–East Asian teleconnection. Part II: How the Philippine Sea anomalous anticyclone is established during El Niño development. J. Climate, 15, 3252–3265. doi: 10.1175/1520-0442(2002)015<3252:peatpi>2.0.co;2
[60] Wang, B., R. G. Wu, and X. H. Fu, 2000: Pacific–East Asian teleconnection: How does ENSO affect East Asian climate? J. Climate, 13, 1517–1536. doi: 10.1175/1520-0442(2000)013<1517:peathd>2.0.co;2
[61] Wang, B., Z. W. Wu, J. P. Li, et al., 2008: How to measure the strength of the East Asian summer monsoon. J. Climate, 21, 4449–4463. doi: 10.1175/2008jcli2183.1
[62] Wang, B., J.-Y. Lee, I.-S. Kang, et al., 2009: Advance and prospectus of seasonal prediction: Assessment of the APCC/CliPAS 14-model ensemble retrospective seasonal prediction (1980–2004). Climate Dyn., 33, 97–117. doi: 10.1007/s00382-008-0460-0
[63] Wang, B., B. Q. Xiang, and J.-Y. Lee, 2013: Subtropical high predictability establishes a promising way for monsoon and tropical storm predictions. Proc. Natl. Acad. Sci. USA, 110, 2718–2722. doi: 10.1073/pnas.1214626110
[64] Williams, K. D., C. M. Harris, A. Bodas-Salcedo, et al., 2015: The Met Office Global Coupled model 2.0 (GC2) configuration. Geosci. Model Dev., 8, 1509–1524. doi: 10.5194/gmdd-8-521-2015
[65] Wu, B., and T. J. Zhou, 2008: Oceanic origin of the interannual and interdecadal variability of the summertime western Pacific subtropical high. Geophys. Res. Lett., 35, L13701. doi: 10.1029/2008gl034584
[66] Xie, S. P., K. M. Hu, J. Hafner, et al., 2009: Indian Ocean capacitor effect on Indo–western Pacific climate during the summer following El Niño. J. Climate, 22, 730–747. doi: 10.1175/2008jcli2544.1
[67] Xie, S. P., Y. Kosaka, Y. Du, et al., 2016: Indo–western Pacific ocean capacitor and coherent climate anomalies in post-ENSO summer: A review. Adv. Atmos. Sci., 33, 411–432. doi: 10.1007/s00376-015-5192-6
[68] Xue, F., X. Dong, and F. X. Fan, 2018: Anomalous western Pacific subtropical high during El Niño developing summer in comparison with decaying summer. Adv. Atmos. Sci., 35, 360–367. doi: 10.1007/s00376-017-7046-x
[69] Yuan, Y., S. Yang, and Z. Q. Zhang, 2012: Different evolutions of the Philippine Sea anticyclone between the eastern and central Pacific El Niño: Possible effects of Indian Ocean SST. J. Climate, 25, 7867–7883. doi: 10.1175/jcli-d-12-00004.1
[70] Yuan, Y., H. Gao, X. L. Jia, et al., 2016: Influences of the 2014–2016 super El Niño events on climate. Meteor. Mon., 42, 532–539. (in Chinese)
[71] Yun, K.-S., S.-W. Yeh, and K.-J. Ha, 2013: Distinct impact of tropical SSTs on summer North Pacific high and western North Pacific subtropical high. J. Geophys. Res. Atmos., 118, 4107–4116. doi: 10.1002/jgrd.50253
[72] Zhang, R. H., A. Sumi, and M. Kimoto, 1999: A diagnostic study of the impact of El Niño on the precipitation in China. Adv. Atmos. Sci., 16, 229–241. doi: 10.1007/bf02973084
[73] Zhang, W. J., and F.-F. Jin, 2012: Improvements in the CMIP5 simulations of ENSO-SSTA meridional width. Geophys. Res. Lett., 39, L23704. doi: 10.1029/2012GL053588
[74] Zhang, W. J., F.-F. Jin, J.-X. Zhao, et al., 2013: On the bias in simulated ENSO SSTA meridional widths of CMIP3 models. J. Climate, 26, 3173–3186. doi: 10.1175/JCLI-D-12-00347.1
[75] Zou, H. B., S. S. Wu, J. S. Shan, et al., 2015: Diagnostic study of the severe high temperature event over Mid–East China in 2013 summer. Acta Meteor. Sinica, 73, 481–495. (in Chinese) doi: 10.11676/qxxb2015.035