[1] Berg, R. J., and L. A. Avila, 2011: Atlantic hurricane season of 2009. Mon. Wea. Rev., 139, 1049–1069. doi: 10.1175/2010MWR3476.1
[2] Beven II, J. L., L. A. Avila, E. S. Blake, et al., 2008: Atlantic hurricane season of 2005. Mon. Wea. Rev., 136, 1109–1173. doi: 10.1175/2007MWR2074.1
[3] Brueske, K. F., and C. S. Velden, 2003: Satellite-based tropical cyclone intensity estimation using the NOAA-KLM series advanced microwave sounding unit (AMSU). Mon. Wea. Rev., 131, 687–697. doi: 10.1175/1520-0493(2003)131<0687:SBTCIE>2.0.CO;2
[4] Dvorak, V. F., 1975: Tropical cyclone intensity analysis and forecasting from satellite imagery. Mon. Wea. Rev., 103, 420–430. doi: 10.1175/1520-0493(1975)103<0420:TCIAAF>2.0.CO;2
[5] Dvorak, V. F., 1984: Tropical Cyclone Intensity Analysis Using Satellite Data. NOAA Tech. Rep., 47 pp.
[6] Fritz, S., 1962: Satellite pictures and the origin of hurricane Anna. Mon. Wea. Rev., 90, 507–513. doi: 10.1175/1520-0493(1962)090<0507:SPATOO>2.0.CO;2
[7] Hubert, L. F., and A. Timchalk, 1969: Estimating hurricane wind speeds from satellite pictures. Mon. Wea. Rev., 97, 382–383. doi: 10.1175/1520-0493(1969)097<0382:EHWSFS>2.3.CO;2
[8] Klein, P. M., P. A. Harr, and R. L. Elsberry, 2000: Extratropical transition of western North Pacific tropical cyclones: An overview and conceptual model of the transformation stage. Wea. Forecasting, 15, 373–395. doi: 10.1175/1520-0434(2000)015<0373:ETOWNP>2.0.CO;2
[9] Knaff, J. A., D. P. Brown, J. Courtney, et al., 2010: An evaluation of Dvorak technique–based tropical cyclone intensity estimates. Wea. Forecasting, 25, 1362–1379. doi: 10.1175/2010WAF2222375.1
[10] Knaff, J. A., T. A. Cram, A. B. Schumacher, et al., 2008: Objective identification of annular hurricanes. Wea. Forecasting, 23, 17–28. doi: 10.1175/2007WAF2007031.1
[11] Kofron, D. E., M. F. Piñeros, E. A. Ritchie, et al., 2009: Defining the lifecycle of the extratropical transition of tropical cyclones using the deviation angle variance technique for remotely-sensed imagery. Proceedings of the 13th Conference on Mesoscale Processes, Amer. Meteor. Soc., Salt Lake City.
[12] Liu, Z., X. Wang, W. B. Li, et al., 2007: Progresses in estimation of tropical cyclone intensity with Dvorak technique. Meteor. Sci. Technol., 35, 453–457. (in Chinese) doi: 10.3969/j.issn.1671-6345.2007.04.001
[13] Olander, T. L., and C. S. Velden, 2007: The advanced Dvorak technique: Continued development of an objective scheme to estimate tropical cyclone intensity using geostationary infrared satellite imagery. Wea. Forecasting, 22, 287–298. doi: 10.1175/WAF975.1
[14] Piñeros, M. F., 2009: Objective measures of tropical cyclone intensity and formation from satellite infrared imagery. Ph.D. dissertation, Dept. of Optical Science, University of Arizona, USA, 124 pp.
[15] Piñeros, M. F., E. A. Ritchie, and J. S. Tyo, 2008: Objective measures of tropical cyclone structure and intensity change from remotely sensed infrared image data. IEEE Trans. Geosci. Remote Sens., 46, 3574–3580. doi: 10.1109/TGRS.2008.2000819
[16] Piñeros, M. F., E. A. Ritchie, and J. S. Tyo, 2010: Detecting tropical cyclone genesis from remotely sensed infrared image data. IEEE Geosci. Remote Sens. Lett., 7, 826–830. doi: 10.1109/LGRS.2010.2048694
[17] Piñeros, M. F., E. A. Ritchie, and J. S. Tyo, 2011: Estimating tropical cyclone intensity from infrared image data. Wea. Forecasting, 26, 690–698. doi: 10.1175/WAF-D-10-05062.1
[18] Ritchie, E. A., K. M. Wood, O. G. Rodríguez-Herrera, et al., 2014: Satellite-derived tropical cyclone intensity in the North Pacific Ocean using the deviation-angle variance technique. Wea. Forecasting, 29, 505–516. doi: 10.1175/WAF-D-13-00133.1
[19] Rodríguez-Herrera, O. G., K. M. Wood, K. P. Dolling, et al., 2015: Automatic tracking of pregenesis tropical disturbances within the deviation angle variance system. IEEE Geosci. Remote Sens. Lett., 12, 254–258. doi: 10.1109/LGRS.2014.2334561
[20] Tang, L. L., D. Y. Hu, and X. J. Li, 2012: Spatiotemporal characteristics of tropical cyclone activities in northwestern Pacific from 1951 to 2006. J. Nat. Disast., 21, 31–38. (in Chinese) doi: 10.13577/j.jnd.2012.0105
[21] Torn, R. D., and C. Snyder, 2012: Uncertainty of tropical cyclone best-track information. Wea. Forecasting, 27, 715–729. doi: 10.1175/WAF-D-11-00085.1
[22] Velden, C. S., T. L. Olander, and R. M. Zehr, 1998: Development of an objective scheme to estimate tropical cyclone intensity from digital geostationary satellite infrared imagery. Wea. Forecasting, 13, 172–186. doi: 10.1175/1520-0434(1998)013<0172:DOAOST>2.0.CO;2
[23] Velden, C. S., B. Harper, F. Wells, et al., 2006: The Dvorak tropical cyclone intensity estimation technique: A satellite-based method that has endured for over 30 years. Bull. Amer. Meteor. Soc., 87, 1195–1210. doi: 10.1175/BAMS-87-9-1195
[24] Wood, K. M., O. G. Rodríguez-Herrera, E. A. Ritchie, et al., 2015: Tropical cyclogenesis detection in the North Pacific using the deviation angle variance technique. Wea. Forecasting, 30, 1663–1672. doi: 10.1175/WAF-D-14-00113.1