[1] Aberson, S. D., and M. DeMaria, 1994: Verification of a nested barotropic hurricane track forecast model (VICBAR). Mon. Wea. Rev., 122, 2804–2815. doi: 10.1175/1520-0493(1994)122<2804:VOANBH>2.0.CO;2
[2] Bai, L. Q., Z. Y. Meng, L. Yan, et al., 2017: An integrated damage, visual, and radar analysis of the 2015 Foshan, Guangdong, EF3 tornado in China produced by the landfalling Typhoon Mujigae (2015). Bull. Amer. Meteor. Soc., 98, 2619–2640. doi: 10.1175/BAMS-D-16-0015.1
[3] Bai, L. Q., Z. Y. Meng, K. Sueki, et al., 2020: Climatology of tropical cyclone tornadoes in China from 2006 to 2018. Sci. China Earth Sci., 62, 37–51. doi: 10.1007/s11430-019-9391-1
[4] Bartholmes, J. C., J. Thielen, M. H. Ramos, et al., 2009: The European flood alert system EFAS—Part 2: Statistical skill assessment of probabilistic and deterministic operational forecasts. Hydrol. Earth Syst. Sci., 13, 141–153. doi: 10.5194/hess-13-141-2009
[5] Bassill, N. P., 2014: Accuracy of early GFS and ECMWF Sandy (2012) track forecasts: Evidence for a dependence on cumulus parameterization. Geophys. Res. Lett., 41, 3274–3281. doi: 10.1002/2014GL059839
[6] Bonavita, M., L. Raynaud, and L. Isaksen, 2011: Estimating background-error variances with the ECMWF Ensemble of Data Assimilations system: Some effects of ensemble size and day-to-day variability. Quart. J. Roy. Meteor. Soc., 137, 423–434. doi: 10.1002/qj.756
[7] Bougeault, P., Z. Toth, C. Bishop, et al., 2010: The THORPEX interactive grand global ensemble. Bull. Amer. Meteor. Soc., 91, 1059–1072. doi: 10.1175/2010BAMS2853.1
[8] Brown, D. P., J. L. Beven, J. L. Franklin, et al., 2010: Atlantic hurricane season of 2008. Mon. Wea. Rev., 138, 1975–2001. doi: 10.1175/2009MWR3174.1
[9] Carr, III L. E., and R. L. Elsberry, 2000a: Dynamical tropical cyclone track forecast errors. Part I: Tropical region error sources. Wea. Forecasting, 15, 641–661. doi: 10.1175/1520-0434(2000)015<0641:DTCTFE>2.0.CO;2
[10] Carr, III L. E., and R. L. Elsberry, 2000b: Dynamical tropical cyclone track forecast errors. Part II: Midlatitude circulation influences. Wea. Forecasting, 15, 662–681. doi: 10.1175/1520-0434(2000)015<0662:DTCTFE>2.0.CO;2
[11] Chan, J. C. L., and W. M. Gray, 1982: Tropical cyclone movement and surrounding flow relationships. Mon. Wea. Rev., 110, 1354–1374. doi: 10.1175/1520-0493(1982)110<1354:TCMASF>2.0.CO;2
[12] Chan, K. T. F., and J. C. L. Chan, 2013: Angular momentum transports and synoptic flow patterns associated with tropical cyclone size change. Mon. Wea. Rev., 141, 3985–4007. doi: 10.1175/MWR-D-12-00204.1
[13] Chen, J. H., M. S. Peng, C. A. Reynolds, et al., 2009: Interpretation of tropical cyclone forecast sensitivity from the singular vector perspective. J. Atmos. Sci., 66, 3383–3400. doi: 10.1175/2009JAS3063.1
[14] Colbert, A. J., and B. J. Soden, 2012: Climatological variations in North Atlantic tropical cyclone tracks. J. Climate, 25, 657–673. doi: 10.1175/JCLI-D-11-00034.1
[15] Dong, K. Q., and C. J. Neumann, 1986: The relationship between tropical cyclone motion and environmental geostrophic flows. Mon. Wea. Rev., 114, 115–122. doi: 10.1175/1520-0493(1986)114<0115:TRBTCM>2.0.CO;2
[16] Du, J., S. L. Mullen, and F. Sanders, 1997: Short-range ensemble forecasting of quantitative precipitation. Mon. Wea. Rev., 125, 2427–2459. doi: 10.1175/1520-0493(1997)125<2427:SREFOQ>2.0.CO;2
[17] Elsberry, R. L., Ed., 1987: A Global View of Tropical Cyclones. Office of Naval Research, Arlington, 185 pp.
[18] Elsberry, R. L., H. C. Tsai, and M. S. Jordan, 2014: Extended-range forecasts of Atlantic tropical cyclone events during 2012 using the ECMWF 32-day ensemble predictions. Wea. Forecasting, 29, 271–288. doi: 10.1175/WAF-D-13-00104.1
[19] Elsner, J. B., K. B. Liu, and B. Kocher, 2000: Spatial variations in major U.S. hurricane activity: Statistics and a physical mechanism. J. Climate, 13, 2293–2305. doi: 10.1175/1520-0442(2000)013<2293:SVIMUS>2.0.CO;2
[20] Galarneau, T. J. Jr., and C. A. Davis, 2013: Diagnosing forecast errors in tropical cyclone motion. Mon. Wea. Rev., 141, 405–430. doi: 10.1175/MWR-D-12-00071.1
[21] George, J. E., and W. M. Gray, 1976: Tropical cyclone motion and surrounding parameter relationships. J. Appl. Meteor., 15, 1252–1264. doi: 10.1175/1520-0450(1976)015<1252:tcmasp>2.0.co;2
[22] Goerss, J. S., and R. A. Jeffries, 1994: Assimilation of synthetic tropical cyclone observations into the Navy Operational Global Atmospheric Prediction System. Wea. Forecasting, 9, 557–576. doi: 10.1175/1520-0434(1994)009<0557:AOSTCO>2.0.CO;2
[23] Hamill, T. M., G. T. Bates, J. S. Whitaker, et al., 2013: NOAA’s second-generation global medium-range ensemble reforecast dataset. Bull. Amer. Meteor. Soc., 94, 1553–1565. doi: 10.1175/BAMS-D-12-00014.1
[24] Heming, J. T., and A. M. Radford, 1998: The performance of the United Kingdom Meteorological Office Global Model in predicting the tracks of Atlantic tropical cyclones in 1995. Mon. Wea. Rev., 126, 1323–1331. doi: 10.1175/1520-0493(1998)126<1323:TPOTUK>2.0.CO;2
[25] Hewson, T. D., and H. A. Titley, 2010: Objective identification, typing and tracking of the complete life-cycles of cyclonic features at high spatial resolution. Meteor. Appl., 17, 355–381. doi: 10.1002/met.204
[26] Holland, G. J., 1983: Tropical cyclone motion: Environmental interaction plus a beta effect. J. Atmos. Sci., 40, 328–342. doi: 10.1175/1520-0469(1983)040<0328:TCMEIP>2.0.CO;2
[27] Huang, L., and Y. L. Luo, 2017: Evaluation of quantitative precipitation forecasts by TIGGE ensembles for South China during the presummer rainy season. J. Geophys. Res. Atmos., 122, 8494–8516. doi: 10.1002/2017JD026512
[28] Jung, B.-J., H.-M. Kim, F. Q. Zhang, et al., 2012: Effect of targeted dropsonde observations and best track data on the track forecasts of Typhoon Sinlaku (2008) using an ensemble Kalman filter. Tellus A, 64A, 14984. doi: 10.3402/tellusa.v64i0.14984
[29] Kehoe, R. M., M. A. Boothe, and R. L. Elsberry, 2007: Dynamical tropical cyclone 96- and 120-h track forecast errors in the western North Pacific. Wea. Forecasting, 22, 520–538. doi: 10.1175/WAF1002.1
[30] König, W., R. Sausen, and F. Sielmann, 1993: Objective identification of cyclones in GCM simulations. J. Climate, 6, 2217–2231. doi: 10.1175/1520-0442(1993)006<2217:OIOCIG>2.0.CO;2
[31] Lander, M., and G. J. Holland, 1993: On the interaction of tropi-cal-cyclone-scale vortices. I: Observations. Quart. J. Roy. Meteor. Soc., 119, 1347–1361. doi: 10.1002/qj.49711951406
[32] Lang, S. T. K., M. Leutbecher, and S. C. Jones, 2012: Impact of perturbation methods in the ECMWF ensemble prediction system on tropical cyclone forecasts. Quart. J. Roy. Meteor. Soc., 138, 2030–2046. doi: 10.1002/qj.1942
[33] Lee, C. S., K. K. W. Cheung, W.-T. Fang, et al., 2010: Initial maintenance of tropical cyclone size in the western North Pacific. Mon. Wea. Rev., 138, 3207–3223. doi: 10.1175/2010MWR3023.1
[34] Lee, D. K., and M. S. Suh, 2000: Ten-year East Asian summer monsoon simulation using a regional climate model (RegCM2). J. Geophys. Res. Atmos., 105, 29565–29577. doi: 10.1029/2000JD900438
[35] Leung, L. R., S. J. Ghan, Z. C. Zhao, et al., 1999: Intercomparison of regional climate simulations of the 1991 summer monsoon in eastern Asia. J. Geophys. Res. Atmos., 104, 6425–6454. doi: 10.1029/1998jd200016
[36] Kossin, J. P., S. J. Camargo, and M. Sitkowski, 2010: Climate modulation of North Atlantic hurricane tracks. J. Climate, 23, 3057–3076. doi: 10.1175/2010JCLI3497.1
[37] Majumdar, S. J., S. D. Aberson, C. H. Bishop, et al., 2006: A comparison of adaptive observing guidance for Atlantic tropical cyclones. Mon. Wea. Rev., 134, 2354–2372. doi: 10.1175/MWR3193.1
[38] Magnusson, L., J. R. Bidlot, S. T. K. Lang, et al., 2014: Evaluation of medium-range forecasts for Hurricane Sandy. Mon. Wea. Rev., 142, 1962–1981. doi: 10.1175/MWR-D-13-00228.1
[39] McTaggart-Cowan, R., L. F. Bosart, J. R. Gyakum, et al., 2006: Hurricane Juan (2003). Part II: Forecasting and numerical simulation. Mon. Wea. Rev., 134, 1748–1771. doi: 10.1175/MWR3143.1
[40] Meehl, G. A., J. M. Arblaster, C. M. Bitz, et al., 2016: Antarctic sea-ice expansion between 2000 and 2014 driven by tropical Pacific decadal climate variability. Nat. Geosci., 9, 590–595. doi: 10.1038/ngeo2751
[41] Melhauser, C., F. Q. Zhang, Y. H. Weng, et al., 2017: A multiple-model convection-permitting ensemble examination of the probabilistic prediction of tropical cyclones: Hurricanes Sandy (2012) and Edouard (2014). Wea. Forecasting, 32, 665–688. doi: 10.1175/WAF-D-16-0082.1
[42] Munsell, E. B., and F. Q. Zhang, 2014: Prediction and uncertainty of Hurricane Sandy (2012) explored through a real-time cloud-permitting ensemble analysis and forecast system assimilating airborne Doppler radar observations. J. Adv. Model. Earth Syst., 6, 38–58. doi: 10.1002/2013ms000297
[43] Peng, M. S., and C. A. Reynolds, 2006: Sensitivity of tropical cyclone forecasts as revealed by singular vectors. J. Atmos. Sci., 63, 2508–2528. doi: 10.1175/JAS3777.1
[44] Peng, X. D., J. F. Fei, X. G. Huang, et al., 2017: Evaluation and error analysis of official forecasts of tropical cyclones during 2005–14 over the western North Pacific. Part I: Storm tracks. Wea. Forecasting, 32, 689–712. doi: 10.1175/WAF-D-16-0043.1
[45] Qian, C. H., F. Q. Zhang, B. W. Green, et al., 2013: Probabilistic evaluation of the dynamics and prediction of Supertyphoon Megi (2010). Wea. Forecasting, 28, 1562–1577. doi: 10.1175/WAF-D-12-00121.1
[46] Rappaport, E. N., J. L. Franklin, L. A. Avila, et al., 2009: Advances and challenges at the National Hurricane Center. Wea. Forecasting, 24, 395–419. doi: 10.1175/2008WAF2222128.1
[47] Ren, S. L., Y. M. Liu, and G. X. Wu, 2007: Interactions between typhoon and subtropical anticyclone over western Pacific revealed by numerical experiments. Acta Meteor. Sinica, 65, 329–340. (in Chinese) doi: 10.3321/j.issn:0577-6619.2007.03.003
[48] Richardson, D., R. Buizza, and R. Hagedorn, 2005: First Workshop on the THORPEX Interactive Grand Global Ensemble (TIGGE): Final Report. World Meteorological Organization Rep. WMO/TD-No. 1273, 39 pp.
[49] Ritchie, E. A., and G. J. Holland, 1997: Scale interactions during the formation of Typhoon Irving. Mon. Wea. Rev., 125, 1377–1396. doi: 10.1175/1520-0493(1997)125<1377:SIDTFO>2.0.CO;2
[50] Sanders, F., A. L. Adams, N. J. B. Gordon, et al., 1980: Further development of a barotropic operational model for predicting paths of tropical storms. Mon. Wea. Rev., 108, 642–654. doi: 10.1175/1520-0493(1980)108<0642:FDOABO>2.0.CO;2
[51] Sheets, R. C., 1990: The National Hurricane Center—Past, present, and future. Wea. Forecasting, 5, 185–232. doi: 10.1175/1520-0434(1990)005<0185:TNHCPA>2.0.CO;2
[52] Simpson, J., E. Ritchie, G. J. Holland, et al., 1997: Mesoscale interactions in tropical cyclone genesis. Mon. Wea. Rev., 125, 2643–2661. doi: 10.1175/1520-0493(1997)125<2643:MIITCG>2.0.CO;2
[53] Speer, M. S., and L. M. Leslie, 1997: An example of the utility of ensemble rainfall forecasting. Austr. Meteor. Mag., 46, 75–78.
[54] Sun, Y., Z. Zhong, W. Lu, et al., 2014: Why are tropical cyclone tracks over the western North Pacific sensitive to the cumulus parameterization scheme in regional climate modeling? A case study for Megi (2010). Mon. Wea. Rev., 142, 1240–1249. doi: 10.1175/MWR-D-13-00232.1
[55] Sun, Y., Z. Zhong, and W. Lu, 2015: Sensitivity of tropical cyclone feedback on the intensity of the western Pacific subtropical high to microphysics schemes. J. Atmos. Sci., 72, 1346–1368. doi: 10.1175/JAS-D-14-0051.1
[56] Torn, R. D., J. S. Whitaker, P. Pegion, et al., 2015: Diagnosis of the source of GFS medium-range track errors in Hurricane Sandy (2012). Mon. Wea. Rev., 143, 132–152. doi: 10.1175/MWR-D-14-00086.1
[57] Tracton, M. S., and E. Kalnay, 1993: Operational ensemble prediction at the National Meteorological Center: Practical aspects. Wea. Forecasting, 8, 379–398. doi: 10.1175/1520-0434(1993)008<0379:OEPATN>2.0.CO;2
[58] Velden, C. S., and L. M. Leslie, 1991: The basic relationship between tropical cyclone intensity and the depth of the environmental steering layer in the Australian region. Wea. Forecasting, 6, 244–253. doi: 1520-0434(1991)006<0244:TBRBTC>2.0.CO;2
[59] Wang, Y. Q., and G. J. Holland, 1996: Tropical cyclone motion and evolution in vertical shear. J. Atmos. Sci., 53, 3313–3332. doi: 10.1175/1520-0469(1996)053<3313:TCMAEI>2.0.CO;2
[60] Wang, Y. Q., and H. Wang, 2013: The inner-core size increase of Typhoon Megi (2010) during its rapid intensification phase. Trop. Cycl. Res. Rev., 2, 65–80. doi: 10.6057/2013TCRR02.01
[61] Williford, C. E., R. J. Correra-Torres, and T. N. Krishnamurti, 1998: Tropical cyclone forecasts made with the FSU Global Spectral Model. Mon. Wea. Rev., 126, 1332–1336. doi: 10.1175/1520-0493(1998)126<1332:TCFMWT>2.0.CO;2
[62] Wu, C.-C., and K. A. Emanuel, 1993: Interaction of a baroclinic vortex with background shear: Application to hurricane movement. J. Atmos. Sci., 50, 62–76. doi: 10.1175/1520-0469(1993)050<0062:IOABVW>2.0.CO;2
[63] Wu, C.-C., J.-H. Chen, P.-H. Lin, et al., 2007: Targeted observations of tropical cyclone movement based on the adjoint-derived sensitivity steering vector. J. Atmos. Sci., 64, 2611–2626. doi: 10.1175/JAS3974.1
[64] Wu, C.-C., J. H. Chen, S. J. Majumdar, et al., 2009: Intercomparison of targeted observation guidance for tropical cyclones in the northwestern Pacific. Mon. Wea. Rev., 137, 2471–2492. doi: 10.1175/2009MWR2762.1
[65] Wu, L. G., W. Tian, Q. Y. Liu, et al., 2015: Implications of the observed relationship between tropical cyclone size and intensity over the western North Pacific. J. Climate, 28, 9501–9506. doi: 10.1175/JCLI-D-15-0628.1
[66] Yamaguchi, M., and S. J. Majumdar, 2010: Using TIGGE data to diagnose initial perturbations and their growth for tropical cyclone ensemble forecasts. Mon. Wea. Rev., 138, 3634–3655. doi: 10.1175/2010MWR3176.1
[67] Ying, M., W. Zhang, H. Yu, et al., 2014: An overview of the China Meteorological Administration tropical cyclone database. J. Atmos. Oceanic Technol., 31, 287–301. doi: 10.1175/JTECH-D-12-00119.1
[68] Zhang, G. J., 1994: Effects of cumulus convection on the simulated monsoon circulation in a general circulation model. Mon. Wea. Rev., 122, 2022–2038. doi: 10.1175/1520-0493(1994)122<2022:EOCCOT>2.0.CO;2
[69] Zhong, Z., and Y. J. Hu, 2007: Impacts of tropical cyclones on the regional climate: An East Asian summer monsoon case. Atmos. Sci. Lett., 8, 93–99. doi: 10.1002/asl.158
[70] Zhu, Y. J., 2005: Ensemble forecast: A new approach to uncertainty and predictability. Adv. Atmos. Sci., 22, 781–788. doi: 10.1007/BF02918678