[1] Balsamo, G., R. Salgado, E. Dutra, et al., 2012: On the contribution of lakes in predicting near-surface temperature in a global weather forecasting model. Tellus A, 64, 15829. doi: 10.3402/tellusa.v64i0.15829
[2] Bullock, O. R. Jr., K. Alapaty, J. A. Herwehe, et al., 2014: An observation-based investigation of nudging in WRF for downscaling surface climate information to 12-km grid spacing. J. Appl. Meteor. Climatol., 53, 20–33. doi: 10.1175/JAMC-D-13-030.1
[3] Deng, B., S. D. Liu, W. Xiao, et al., 2013: Evaluation of the CLM4 lake model at a large and shallow freshwater lake. J. Hydrometeorol., 14, 636–649. doi: 10.1175/JHM-D-12-067.1
[4] Dutra, E., V. M. Stepanenko, G. Balsamo, et al., 2010: An offline study of the impact of lakes on the performance of the ECMWF surface scheme. Boreal Environ. Res., 15, 100–112.
[5] Fu, M. N., 2013: Research on the impacts of Poyang Lake on typical weather process and the characteristics of near surface boundary layer. Ph. D. dissertation, Nanjing University of Information Science & Technology, 100 pp. (in Chinese)
[6] Gao, Y., J. S. Fu, J. B. Drake, et al., 2012: Projected changes of extreme weather events in the eastern United States based on a high resolution climate modeling system. Environ. Res. Lett., 7, 044025. doi: 10.1088/1748-9326/7/4/044025
[7] Gu, H. P., X. S. Shen, J. M. Jin, et al., 2014: An application of a 1-D thermal diffusion lake model to Lake Taihu. Acta Meteor. Sinica, 71, 719–730. doi: 10.11676/qxxb2013.051
[8] Gu, H. P., J. M. Jin, Y. H. Wu, et al., 2015: Calibration and validation of lake surface temperature simulations with the coupled WRF-lake model. Climatic Change, 129, 471–483. doi: 10.1007/s10584-013-0978-y
[9] Gu, H. P., Z. G. Ma, and M. X. Li, 2016: Effect of a large and very shallow lake on local summer precipitation over the Lake Taihu basin in China. J. Geophys. Res. Atmos., 121, 8832–8848. doi: 10.1002/2015JD024098
[10] Gula, J., and W. R. Peltier, 2012: Dynamical downscaling over the Great Lakes basin of North America using the WRF regional climate model: The impact of the great lakes system on regional greenhouse warming. J. Climate, 25, 7723–7742. doi: 10.1175/JCLI-D-11-00388.1
[11] Heikinheimo, M., M. Kangas, T. Tourula, et al., 1999: Momentum and heat fluxes over lakes Tämnaren and Råksjö determined by the bulk-aerodynamic and eddy-correlation methods. Agric. For. Meteor., 98-99, 521–534. doi: 10.1016/S0168-1923(99)00121-5
[12] Henderson-Sellers, B., 1986: Calculating the surface energy balance for lake and reservoir modeling: A review. Rev. Geophys., 24, 625–649. doi: 10.1029/RG024i003p00625
[13] Hong, S. Y., and J. O. J. Lim, 2006: The WRF single-moment 6-class microphysics scheme (WSM6). J. Korean Meteor. Soc., 42, 129–151.
[14] Hostetler, S. W., and P. J. Bartlein, 1990: Simulation of lake evaporation with application to modeling lake level variations of Harney–Malheur Lake, Oregon. Water Resour. Res., 26, 2603–2612. doi: 10.1029/WR026i010p02603
[15] Hostetler, S. W., G. T. Bates, and F. Giorgi, 1993: Interactive coupling of a lake thermal model with a regional climate model. J. Geophys. Res. Atmos., 98, 5045–5057. doi: 10.1029/92JD02843
[16] Hostetler, S. W., F. Giorgi, G. T. Bates, et al., 1994: Lake–atmosphere feedbacks associated with paleolakes Bonneville and Lahontan. Science, 263, 665–668. doi: 10.1126/science.263.5147.665
[17] Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170–181. doi: 10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2
[18] Klaić, Z. B., and M. Kvakić, 2014: Modeling the impacts of a man-made lake on the meteorological conditions of the surrounding areas. J. Appl. Meteor. Climatol., 53, 1121–1142. doi: 10.1175/JAMC-D-13-0163.1
[19] Li, R., J. Jin, S. Y. Wang, et al., 2014: Significant impacts of radiation physics in the Weather Research and Forecasting model on the precipitation and dynamics of the West African Monsoon. Climate Dyn., 44, 1583–1594. doi: 10.1007/s00382-014-2294-2
[20] Lin, B. Y., and M. X. Li, 1988: Characteristic feature of the lake-land breeze and its effect on precipitation over the Dongtinghu Lake. J. Nanjing Inst. Meteor., 11, 78–88. (in Chinese)
[21] Lofgren, B. M., 1997: Simulated effects of idealized Laurentian Great Lakes on regional and large-scale climate. J. Climate, 10, 2847–2858. doi: 10.1175/1520-0442(1997)010<2847:SEOILG>2.0.CO;2
[22] Long, Z., W. Perrie, J. Gyakum, et al., 2007: Northern lake impacts on local seasonal climate. J. Hydrometeorol., 8, 881–896. doi: 10.1175/JHM591.1
[23] Mallard, M. S., C. G. Nolte, O. R. Bullock, et al., 2014: Using a coupled lake model with WRF for dynamical downscaling. J. Geophys. Res. Atmos., 119, 7193–7208. doi: 10.1002/2014JD021785
[24] Mallard, M. S., C. G. Nolte, T. L. Spero, et al., 2015: Technical challenges and solutions in representing lakes when using WRF in downscaling applications. Geosci. Model Dev., 8, 1085–1096. doi: 10.5194/gmd-8-1085-2015
[25] Martynov, A., L. Sushama, R. Laprise, et al., 2016: Interactive lakes in the Canadian Regional Climate Model, version 5: The role of lakes in the regional climate of North America. Tellus A, 68, 16226. doi: 10.3402/tellusa.v64i0.16226
[26] Meng, X. H., Evans, J. P., and M. F. McCabe, 2014: The impact of observed vegetation changes on land–atmosphere feedbacks during drought. J. Hydrometeorol., 15, 759–776. doi: 10.1175/JHM-D-13-0130.1
[27] Meng, X. H., S. H. Lyu, T. T. Zhang, et al., 2018: Simulated cold bias being improved by using MODIS time-varying albedo in the Tibetan Plateau in WRF model. Environ. Res. Lett., 13, 044028. doi: 10.1088/1748-9326/aab44a
[28] Mlawer, E. J., S. J. Taubman, P. D. Brown, et al., 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res. Atmos., 102, 16663–16682. doi: 10.1029/97JD00237
[29] Niu, G. Y., Z. L. Yang, K. E. Mitchell, et al., 2011: The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. J. Geophys. Res. Atmos., 116, D12109. doi: 10.1029/2010JD015139
[30] Noh, Y., W. Cheon, S. Y. Hong, et al., 2003: Improvement of the K-profile model for the planetary boundary layer based on large eddy simulation data. Bound.-Layer Meteor., 107, 401–427. doi: 10.1023/A:1022146015946
[31] Notaro, M., K. Holman, A. Zarrin, et al., 2013: Influence of the Laurentian Great Lakes on regional climate. J. Climate, 26, 789–804. doi: 10.1175/JCLI-D-12-00140.1
[32] Oleson, K. W., D. M. Lawrence, G. B. Bonan, et al., 2013: Technical Description of Version 4.5 of the Community Land Model (CLM). NCAR Technical Note NCAR/TN-503+STR, Boulder, Colorado: NCAR Earth System Laboratory, doi: 10.5065/D6RR1W7M
[33] Samuelsson, P., E. Kourzeneva, and D. Mironov, 2010: The impact of lakes on the European climate as simulated by a regional climate model. Boreal Environ. Res., 15, 113–129.
[34] Schmidlin, T. W., 2005. Lakes, Effects on Climate. Springer, Dordrecht, 444–445, doi: 10.1007/1-4020-3266-8_119.
[35] Scott, R. W., and F. A. Huff, 1996: Impacts of the Great Lakes on regional climate conditions. J. Great Lakes Res., 22, 845–863. doi: 10.1016/S0380-1330(96)71006-7
[36] Scott, R. W., and F. A. Huff, 1997: Lake Effects on Climatic Conditions in the Great Lakes Basin. ISWS Contract Report CR-617, Illinois State Water Survey, Illinois, 73 pp.
[37] Sills, D. M. L., J. R. Brook, I. Levy, et al., 2011: Lake breezes in the southern Great Lakes region and their influence during BAQS-Met 2007. Atmos. Chem. Phys., 11, 7955–7973. doi: 10.5194/acp-11-7955-2011
[38] Stepanenko, V. M., A. Martynov, K. D. Jöhnk, et al., 2013: A one-dimensional model intercomparison study of thermal regime of a shallow, turbid midlatitude lake. Geosci. Model Dev., 6, 1337–1352. doi: 10.5194/gmd-6-1337-2013
[39] Subin, Z. M., W. J. Riley, and D. Mironov, 2012: An improved lake model for climate simulations: Model structure, evaluation, and sensitivity analyses in CESM1. J. Adv. Mod. Earth Syst., 4, M02001. doi: 10.1029/2011MS000072
[40] Venäläinen, A., M. Frech, M. Heikinheimo, et al., 1999: Comparison of latent and sensible heat fluxes over boreal lakes with concurrent fluxes over a forest: Implications for regional averaging. Agric. For. Meteor., 98–99, 535–546. doi: 10.1016/S0168-1923(99)00100-8
[41] Wang, X. F., and Z. J. Liu, 2008: Statistical characteristics of tropical cyclones making landfalls and passing through lakes in China. J. Trop. Meteor., 24, 539–545. (in Chinese) doi: 10.3969/j.issn.1004-4965.2008.05.015
[42] Xiao, W., S. D. Liu, W. Wang, et al., 2013: Transfer coefficients of momentum, heat and water vapour in the atmospheric surface layer of a large freshwater lake. Bound.-Layer Meteor., 148, 479–494. doi: 10.1007/s10546-013-9827-9
[43] Xu, L. J., H. Z. Liu, Q. Du, et al., 2016: Evaluation of the WRF-lake model over a highland freshwater lake in Southwest China. J. Geophys. Res. Atmos., 121, 13989–14005. doi: 10.1002/2016JD025396
[44] Zhao, X. S., and Y. B. Liu, 2017: Phase transition of surface energy exchange in China’s largest freshwater lake. Agric. For. Meteor., 244–245, 98–110. doi: 10.1016/j.agrformet.2017.05.024