[1] Baklanov, A. A., B. Grisogono, R. Bornstein, et al., 2011: The nature, theory, and modeling of atmospheric planetary boundary layers. Bull. Amer. Meteor. Soc., 92, 123–128. doi: 10.1175/2010BAMS2797.1
[2] Barzel, B., and O. Biham, 2011: Binomial moment equations for stochastic reaction systems. Phys. Rev. Lett., 106, 150602. doi: 10.1103/PhysRevLett.106.150602
[3] Beare, R. J., and M. J. P. Cullen, 2010: A semi-geostrophic mo-del incorporating well-mixed boundary layers. Quart. J. Roy. Meteor. Soc., 136, 906–917. doi: 10.1002/qj.612
[4] Berger, B. W., and B. Grisogono, 1998: The baroclinic, variable eddy viscosity Ekman layer. Bound.-Layer Meteor., 87, 363–380. doi: 10.1023/A:1001076030166
[5] Berner, J., U. Achatz, L. Batté, et al., 2017: Stochastic parameterization: Toward a new view of weather and climate models. Bull. Amer. Meteor. Soc., 98, 565–588. doi: 10.1175/bams-d-15-00268.1
[6] Blumen, W., and R. S. Wu, 1983: Baroclinic instability and frontogenesis with Ekman boundary layer dynamics incorporating the geostrophic momentum approximation. J. Atmos. Sci., 40, 2630–2638. doi: 10.1175/1520-0469(1983)040<2630:BIAFWE>2.0.CO;2
[7] Cullen, M. J. P., 1989: On the incorporation of atmospheric boundary layer effects into a balanced model. Quart. J. Roy. Meteor. Soc., 115, 1109–1131. doi: 10.1002/qj.49711548906
[8] D’Onofrio, L., A. Fiscella, and G. M. Bisci, 2017: Perturbation methods for nonlocal Kirchhoff-type problems. Fract. Calc. Appl. Anal., 20, 829–853. doi: 10.1515/fca-2017-0044
[9] Ekman, V. W., 1905: On the influence of the earth’s rotation on ocean-currents. Arch. Math. Astron. Phys., 2, 1–53.
[10] Fox, B. L., 1999: Strategies for Quasi-Monte Carlo. Springer, Boston, 54–93, doi: 10.1007/978-1-4615-5221-5.
[11] Ghanem, R. G., and P. D. Spanos, 1991: Stochastic Finite Elements: A Spectral Approach. Springer, New York, 46–105, doi: 10.1007/978-1-4612-3094-6.
[12] Grisogono, B., T. Jurlina, Ž. Večenaj, et al., 2015: Weakly nonlinear Prandtl model for simple slope flows. Quart. J. Roy. Meteor. Soc., 141, 883–892. doi: 10.1002/qj.2406
[13] Helton, J. C., and F. J. Davis, 2003: Latin hypercube sampling and the propagation of uncertainty in analyses of complex systems. Reliability Engineering & System Safety, 81, 23–69. doi: 10.1016/S0951-8320(03)00058-9
[14] Le Maître, O. P., and O. M. Knio, 2010: Spectral Methods for Uncertainty Quantification: With Applications to Computational Fluid Dynamics. Springer, Dordrecht, 18–29, doi: 10.1007/978-90-481-3520-2.
[15] Li, J., and D. B. Xiu, 2009: A generalized polynomial chaos based ensemble Kalman filter with high accuracy. J. Comput. Phys., 228, 5454–5469. doi: 10.1016/j.jcp.2009.04.029
[16] Li, W. X., Z. M. Lu, and D. X. Zhang, 2009: Stochastic analysis of unsaturated flow with probabilistic collocation method. Water Resour. Res., 45, W08425. doi: 10.1029/2008WR007530
[17] Li, W. X., G. Lin, and D. X. Zhang, 2014: An adaptive ANOVA-based PCKF for high-dimensional nonlinear inverse modeling. J. Comput. Phys., 258, 752–772. doi: 10.1016/j.jcp.2013.11.019
[18] Lin, G., A. M. Tartakovsky, and D. M. Tartakovsky, 2010: Uncertainty quantification via random domain decomposition and probabilistic collocation on sparse grids. J. Comput. Phys., 229, 6995–7012. doi: 10.1016/j.jcp.2010.05.036
[19] Loh, W. L., 1996: On Latin hypercube sampling. Ann. Stat., 24, 2058–2080. doi: 10.1214/aos/1069362310
[20] Mahrt, L., 1998: Stratified atmospheric boundary layers and breakdown of models. Theoret. Comput. Fluid Dynamics, 11, 263–279. doi: 10.1007/s001620050093
[21] Marlatt, S., S. Waggy, and S. Biringen, 2012: Direct numerical simulation of the turbulent Ekman layer: Evaluation of closure models. J. Atmos. Sci., 69, 1106–1117. doi: 10.1175/JAS-D-11-0107.1
[22] Marzouk, Y. M., and H. N. Najm, 2009: Dimensionality reduction and polynomial chaos acceleration of Bayesian inference in inverse problems. J. Comput. Phys., 228, 1862–1902. doi: 10.1016/j.jcp.2008.11.024
[23] Najm, H. N., 2009: Uncertainty quantification and polynomial chaos techniques in computational fluid dynamics. Annu. Rev. Fluid Mech., 41, 35–52. doi: 10.1146/annurev.fluid.010908.165248
[24] Schoutens, W., 2000: The Askey scheme of orthogonal polynomials. Stochastic Processes and Orthogonal Polynomials, W. Schoutens, Ed., Springer, New York, 1–13, doi: 10.1007/978-1-4612-1170-9.
[25] Singer, H., 2006: Moment equations and Hermite expansion for nonlinear stochastic differential equations with application to stock price models. Comput. Stat., 21, 385–397. doi: 10.1007/s00180-006-0001-4
[26] Sun, N. Z., and A. Sun, 2015: Model uncertainty quantification. Model Calibration and Parameter Estimation: For Environmental and Water Resource Systems, N. Z. Sun, and A. Sun, Ed., Springer, New York, 407–458, doi: 10.1007/978-1-4939-2323-6_10.
[27] Tan, Z. M., 2001: An approximate analytical solution for the baroclinic and variable eddy diffusivity semi-geostrophic Ekman boundary layer. Bound.-Layer Meteor., 98, 361–385. doi: 10.1023/A:1018708726112
[28] Tan, Z. M., and R. S. Wu, 1994: The Ekman momentum approximation and its application. Bound.-Layer Meteor., 68, 193–199. doi: 10.1007/BF00712671
[29] Tan, Z. M., and Y. Wang, 2002: Wind structure in an intermediate boundary layer model based on Ekman momentum approximation. Adv. Atmos. Sci., 19, 266–278. doi: 10.1007/s00376-002-0021-0
[30] Tan, Z. M., J. Fang, and R. S. Wu, 2006: Nonlinear Ekman layer theories and their applications. J. Meteor. Res., 20, 209–222.
[31] Twigg, R. D., and P. R. Bannon, 1998: Frontal equilibration by frictional processes. J. Atmos. Sci., 55, 1084–1087. doi: 10.1175/1520-0469(1998)055<1084:FEBFP>2.0.CO;2
[32] Wang, Y. P., Y. Cheng, Z. Y. Zhang, et al., 2018: Calibration of reduced-order model for a coupled Burgers equations based on PC-EnKF. Math. Model. Nat, Phenom., 13, 21. doi: 10.1051/mmnp/2018023
[33] Wiener, N., 1938: The homogeneous chaos. Amer. J. Math., 60, 897–936. doi: 10.2307/2371268
[34] Wu, R. S., and W. Blumen, 1982: An analysis of Ekman boundary layer dynamics incorporating the geostrophic momentum approximation. J. Atmos. Sci., 39, 1774–1782. doi: 10.1175/1520-0469(1982)039<1774:AAOEBL>2.0.CO;2
[35] Xiu, D. B., 2009: Fast numerical methods for stochastic computations: A review. Comput. Commun. Phys., 5, 242–272.
[36] Xiu, D. B., 2010: Numerical Methods for Stochastic Computations: A Spectral Method Approach. Princeton University Press, Princeton, 26–88.
[37] Yan, B., S. X. Huang, and J. Feng, 2017: Retrieval of eddy thermal conductivity in the weakly nonlinear Prandtl model for katabatic flows. J. Meteor. Res., 31, 965–975. doi: 10.1007/s13351-017-7025-2
[38] Yan, B., S. X. Huang, and J. Feng, 2018: Retrieval and uncertainty analysis of stochastic parameter in atmospheric boundary layer model. Acta Phys. Sinica, 67, 199201. (in Chinese) doi: 10.7498/aps.67.20181014
[39] Zeng, L. Z., and D. X. Zhang, 2010: A stochastic collocation based Kalman filter for data assimilation. Comput. Geosci., 14, 721–744. doi: 10.1007/s10596-010-9183-5