[1] Ahmad, H., 2019: Machine learning applications in oceanography. Aquat. Res., 2, 161–169. doi: 10.3153/ar19014
[2] Breiman, L., 2001: Random forests. Mach. Learn., 45, 5–32. doi: 10.1023/a:1010933404324
[3] Brimelow, J. C., W. R. Burrows, and J. M. Hanesiak, 2017: The changing hail threat over North America in response to anthropogenic climate change. Nat. Climate Change, 7, 516–522. doi: 10.1038/nclimate3321
[4] Cao, Y. C., F. Y. Tian, Y. G. Zheng, et al., 2018: Statistical characteristics of environmental parameters for hail over the two-step terrains of China. Plateau Meteor., 37, 185–196. (in Chinese) doi: 10.7522/j.issn.1000-0534.2017.00044
[5] Czernecki, B., M. Taszarek, M. Marosz, et al., 2019: Application of machine learning to large hail prediction-The importance of radar reflectivity, lightning occurrence and convective parameters derived from ERA5. Atmos. Res., 227, 249–262. doi: 10.1016/j.atmosres.2019.05.010
[6] Dai, Y., N. He, Z. Y. Fu, et al., 2019: Beijing intelligent grid temperature objective prediction method (BJTM) and verification of forecast result. J. Arid Meteor., 37, 339–344, 350. (in Chinese)
[7] Dennis, E. J., and M. R. Kumjian, 2017: The impact of vertical wind shear on hail growth in simulated supercells. J. Atmos. Sci., 74, 641–663. doi: 10.1175/jas-d-16-0066.1
[8] Diao, X. G., J. J. Zhu, X. S. Huang, et al., 2008: Application of VIL and VIL density in warning criteria for hailstorm. Plateau Meteor., 27, 1131–1139. (in Chinese)
[9] Farr, T. G., P. A. Rosen, E. Caro, et al., 2007: The shuttle radar topography mission. Rev. Geophys., 45, RG2004. doi: 10.1029/2005rg000183
[10] Gagne II, D. J., A. McGovern, J. Brotzge, et al., 2015: Day-ahead hail prediction integrating machine learning with storm-scale numerical weather models. Proc. 29th AAAI Conference on Artificial Intelligence, AAAI, Austin, TX, USA, 3954–3960.
[11] Gagne II, D. J., A. McGovern, S. E. Haupt, et al., 2017: Storm-based probabilistic hail forecasting with machine learning applied to convection-allowing ensembles. Wea. Forecasting, 32, 1819–1840. doi: 10.1175/waf-d-17-0010.1
[12] Guan, Y. H., F. L. Zheng, P. Zhang, et al., 2015: Spatial and temporal changes of meteorological disasters in China during 1950–2013. Nat. Hazards, 75, 2607–2623. doi: 10.1007/s11069-014-1446-3
[13] Haberlie, A. M., and W. S. Ashley, 2018: A method for identifying midlatitude mesoscale convective systems in radar mosaics. Part I: Segmentation and classification. J. Appl. Meteor. Climatol., 57, 1575–1598. doi: 10.1175/jamc-d-17-0293.1
[14] Hand, W. H., and G. Cappelluti, 2011: A global hail climatology using the UK Met Office convection diagnosis procedure (CDP) and model analyses. Meteor. Appl., 18, 446–458. doi: 10.1002/met.236
[15] Klein, B., L. Wolf, and Y. Afek, 2015: A dynamic convolutional layer for short range weather prediction. Proc. 2015 IEEE Conference on Computer Vision and Pattern Recognition, IEEE, Boston, MA, USA, 4840–4848, doi: 10.1109/CVPR.2015.7299117.
[16] Kunz, M., and M. Puskeiler, 2010: High-resolution assessment of the hail hazard over complex terrain from radar and insurance data. Meteor. Z., 19, 427–439. doi: 10.1127/0941-2948/2010/0452
[17] Lahouar, A., and J. B. H. Slama, 2017: Hour-ahead wind power forecast based on random forests. Renew. Energy, 109, 529–541. doi: 10.1016/j.renene.2017.03.064
[18] Li, C., 2014: Research on severe hail automatic identification and hail suppression decision technology. Master dissertation, University of Tianjin, Tianjin, 57 pp. (in Chinese)
[19] López, L., and J. L. Sánchez, 2009: Discriminant methods for radar detection of hail. Atmos. Res., 93, 358–368. doi: 10.1016/j.atmosres.2008.09.028
[20] Malek, S., R. Gunalan, S. Y. Kedija, et al., 2018: Random forest and self organizing maps application for analysis of pediatric fracture healing time of the lower limb. Neurocomputing, 272, 55–62. doi: 10.1016/j.neucom.2017.05.094
[21] Mallafre, M. C., T. R. Ribas, M. del Carmen Llasat Botija, et al., 2009: Improving hail identification in the Ebro Valley region using radar observations: Probability equations and warning thresholds. Atmos. Res., 93, 474–482. doi: 10.1016/j.atmosres.2008.09.039
[22] Manzato, A., 2012: Hail in northeast Italy: Climatology and bivariate analysis with the sounding-derived indices. J. Appl. Meteor. Climatol., 51, 449–467. doi: 10.1175/jamc-d-10-05012.1
[23] Manzato, A., 2013: Hail in northeast Italy: A neural network ensemble forecast using sounding-derived indices. Wea. Forecasting, 28, 3–28. doi: 10.1175/waf-d-12-00034.1
[24] Marzano, F. S., D. Scaranari, M. Montopoli, et al., 2008: Supervised classification and estimation of hydrometeors from C-band dual-polarized radars: A Bayesian approach. IEEE Trans. Geosci. Remote Sens., 46, 85–98. doi: 10.1109/tgrs.2007.906476
[25] Scher, S., and G. Messori, 2018: Predicting weather forecast uncertainty with machine learning. Quart. J. Roy. Meteor. Soc., 144, 2830–2841. doi: 10.1002/qj.3410
[26] Shi, J. Z., P. Wang, D. Wang, et al., 2019: Radar-based automatic identification and quantification of weak echo regions for hail nowcasting. Atmosphere, 10, 325. doi: 10.3390/atmos10060325
[27] Shi, J. Z., P. Wang, D. Wang, et al., 2020: Radar-based hail-producing storm detection using positive unlabeled classification. Teh. Vjesn., 27, 941–950. doi: 10.17559/tv-20190903094335
[28] Shi, X. J., Z. R. Chen, H. Wang, et al., 2015: Convolutional LSTM network: A machine learning approach for precipitation nowcasting. Proc. 28th International Conference on Neural Information Processing Systems, ACM, Montreal, Canada, 802–810.
[29] Waldvogel, A., B. Federer, and P. Grimm, 1979: Criteria for the detection of hail cells. J. Appl. Meteor. Climatol., 18, 1521–1525. doi: 10.1175/1520-0450(1979)018<1521:cftdoh>2.0.co;2
[30] Wang, P., and Y. Pan, 2013: Severe hail identification model based on saliency characteristics. Acta Phys. Sinica, 62, 069202. (in Chinese) doi: 10.7498/aps.62.069202
[31] Wang, P., C. Li, and Y. Zhang, 2013: An adaptive segmentation arithmetic adapted to intertwined irregular convective storm images. Proc. 2013 International Conference on Machine Learning and Cybernetics, IEEE, Tianjin, China, 896–900, doi: 10.1109/ICMLC.2013.6890410.
[32] Wang, P., Y. Zhang, C. Li, et al., 2014: Feature construction and AP clutter filtering based on gray lever co-occurrence matrix. Comput. Technol. Dev., 24, 1–5. (in Chinese)
[33] Wang, P., Y. Gao, and C. Li, 2016: Method study of classification and recognition of thunderstorm system less than 50 km. Meteor. Mon., 42, 230–237. (in Chinese)
[34] Wang, P., J. Y. Shi, J. Y. Hou, et al., 2018: The identification of hail storms in the early stage using time series analysis. J. Geophys. Res. Atmos., 123, 929–947. doi: 10.1002/2017jd027449
[35] Witt, A., M. D. Eilts, G. J. Stumpf, et al., 1998: An enhanced hail detection algorithm for the WSR-88D. Wea. Forecasting, 13, 286–303. doi: 10.1175/1520-0434(1998)013<0286:AEHDAF>2.0.CO;2
[36] Xu, Y. C., 1991: A comprehensive indexes recogniting hail cloud by using weather radar in mountain area of south Ningxia. Plateau Meteor., 10, 420–425. (in Chinese)
[37] Xue, X. Y., G. Y. Ren, X. B. Sun, et al., 2019: Climatological characteristics of meso-scale and micro-scale strong convective weather events in China. Climatic Environ. Res., 24, 199–213. (in Chinese) doi: 10.3878/j.issn.1006-9585.2018.17148
[38] Yang, J., K. Zhao, G. F. Zhang, et al., 2019: A Bayesian hydrometeor classification algorithm for C-band polarimetric radar. Remote Sens., 11, 1884. doi: 10.3390/rs11161884
[39] Yao, H., X. D. Li, H. J. Pang, et al., 2020: Application of random forest algorithm in hail forecasting over Shandong peninsula. Atmos. Res., 244, 105093. doi: 10.1016/j.atmosres.2020.105093
[40] Yu, X. D., and Y. G. Zheng, 2020: Advances in severe convection research and operation in China. J. Meteor. Res., 34, 189–217. doi: 10.1007/s13351-020-9875-2
[41] Yu, X.-D., Y.-C. Wang, M.-X. Chen, et al., 2005: Severe convective weather warnings and its improvement with the introduction of the NEXRAD. Plateau Meteor., 24, 456–464. (in Chinese) doi: 10.3321/j.issn:1000-0534.2005.03.025
[42] Yu, X. D., X. M. Wang, W. L. Li, et al., 2020: Thunderstorm and Severe Convection Nowcasting. China Meteorological Press, Beijing, 416 pp. (in Chinese)
[43] Yuan, Y., P. Wang, D. Wang, et al., 2018: An algorithm for automated identification of gust fronts from Doppler radar data. J. Meteor. Res., 32, 444–455. doi: 10.1007/s13351-018-7089-7
[44] Zhang, C. J., H. Y. Wang, J. Zeng, et al., 2020: Short-term dyna-mic radar quantitative precipitation estimation based on wavelet transform and support vector machine. J. Meteor. Res., 34, 413–426. doi: 10.1007/s13351-020-9036-7
[45] Zhang, C. X., Q. H. Zhang, and Y. Q. Wang, 2008: Climatology of hail in China: 1961–2005. J. Appl. Meteor. Climatol., 47, 795–804. doi: 10.1175/2007jamc1603.1
[46] Zhang, X. L., J. H. Sun, Y. G. Zheng, et al., 2020: Progress in severe convective weather forecasting in China since the 1950s. J. Meteor. Res., 34, 699–719. doi: 10.1007/s13351-020-9146-2
[47] Zhao, J.-T., Y.-J. Yue, J.-A. Wang, et al., 2015: Study on spatio-temporal pattern of hail disaster in China mainland from 1950 to 2009. Chinese J. Agrometeor., 36, 83–92. (in Chinese) doi: 10.3969/j.issn.1000-6362.2015.01.011
[48] Zhou, K. H., Y. G. Zheng, B. Li, et al., 2019: Forecasting different types of convective weather: A deep learning approach. J. Meteor. Res., 33, 797–809. doi: 10.1007/s13351-019-8162-6
[49] Zou, S. P., 2017: Guizhou Hail Cloud Radar Echo Atlas. China Meteorological Press, Beijing, 423 pp. (in Chinese)