[1] American Meteorological Society (AMS), 2020: AMS Glossary of Meteorology. Available online at http://glossary.ametsoc.org/wiki/Main_Page. Accessed on 25 December 2020.
[2] Bett, P. E., H. E. Thornton, J. F. Lockwood, et al., 2017: Skill and reliability of seasonal forecasts for the Chinese energy sector. J. Appl. Meteor. Climatol., 56, 3099–3114. doi: 10.1175/JAMC-D-17-0070.1
[3] Bruine de Bruin, W., and A. Bostrom, 2013: Assessing what to address in science communication. Proc. Natl. Acad. Sci. USA, 110, 14,062–14,068. doi: 10.1073/pnas.1212729110
[4] Bruno Soares, M., and S. Dessai, 2016: Barriers and enablers to the use of seasonal climate forecasts amongst organisations in Europe. Climatic Change, 137, 89–103. doi: 10.1007/s10584-016-1671-8
[5] de Perez, E. C., B. van den Hurk, M. K. Van Aalst, et al., 2015: Forecast-based financing: An approach for catalyzing humanitarian action based on extreme weather and climate forecasts. Nat. Hazards Earth Syst. Sci., 15, 895–904. doi: 10.5194/nhessd-2-3193-2014
[6] Dessai, S., and M. Hulme, 2004: Does climate adaptation policy need probabilities? Climate Policy, 4, 107–128. doi: 10.1080/14693062.2004.9685515
[7] Engels, A., 2018: Understanding how China is championing climate change mitigation. Palgrave Comm., 4, 1–6. doi: 10.1w057/s41599-018-0150-4
[8] Fischhoff, B., and A. L. Davis, 2014: Communicating scientific uncertainty. Proc. Natl. Acad. Sci. USA, 111, 13,664–13,671. doi: 10.1073/pnas.1317504111
[9] Goddard, L., Y. Aitchellouche, W. Baethgen, et al., 2010: Providing seasonal-to-interannual climate information for risk management and decision-making. Procedia Environ. Sci., 1, 81–101. doi: 10.1016/j.proenv.2010.09.007
[10] Golding, N., C. Hewitt, P. Q. Zhang, et al., 2017a: Improving user engagement and uptake of climate services in China. Climate Services, 5, 39–45. doi: 10.1016/j.cliser.2017.03.004
[11] Golding, N., C. Hewitt, and P. Q. Zhang, 2017b: Effective engagement for climate services: Methods in practice in China. Climate Services, 8, 72–76. doi: 10.1016/j.cliser.2017.11.002
[12] Guest, G., K. M. MacQueen, and E. E. Namey, 2011: Applied Thematic Analysis. SAGE Publications, Thousand Oaks, California, USA, 284 pp.
[13] Haines, S., 2019: Managing expectations: articulating expertise in climate services for agriculture in Belize. Climatic Change, 157, 43–59. doi: 10.1007/s10584-018-2357-1
[14] He, X. B., 2013: Mainstreaming adaptation in integrated water resources management in China: from challenge to change. Water Policy, 15, 895–921. doi: 10.2166/wp.2013.084
[15] Hewitt, C., and N. Golding, 2018: Development and pull-through of climate science to services in China. Adv. Atmos. Sci., 35, 905–908. doi: 10.1007/s00376-018-7255-y
[16] Joslyn, S. L., and J. E. LeClerc, 2012: Uncertainty forecasts improve weather-related decisions and attenuate the effects of forecast error. J. Exp. Psychol.: Appl., 18, 126–140. doi: doi:10.1037/a0025185
[17] Joslyn, S., and J. LeClerc, 2013: Decisions with uncertainty: The glass half full. Curr. Direct. Psychol. Sci., 22, 308–315. doi: 10.1177/0963721413481473
[18] Joslyn, S. L., and J. E. LeClerc, 2016: Climate projections and uncertainty communication. Top. Cognit. Sci., 8, 222–241. doi: 10.1111/tops.12177
[19] Khosravi, F., A. Taylor, and Y. L. Siu, 2021: Chinese water managers’ long-term climate information needs. Sci. Total Environ., 750, 141637. doi: 10.1016/j.scitotenv.2020.141637
[20] Kloprogge, P., J. P. van der Sluijs, and J. A. Wardekker, 2007: Uncertainty Communication: Issues and Good Practice. Copernicus Institute for Sustainable Development and Innovation, Utrecht, the Netherlands, 60 pp.
[21] LeClerc, J., and S. Joslyn, 2015: The cry wolf effect and weather-related decision making. Risk Anal., 35, 385–395. doi: 10.1111/risa.12336
[22] Lemos, M. C., C. J. Kirchhoff, and V. Ramprasad, 2012: Narrowing the climate information usability gap. Nat. Climate Change, 2, 789–794. doi: 10.1038/nclimate1614
[23] Lesch, M. F., P. L. P. Rau, Z. X. Zhao, et al., 2009: A cross-cultural comparison of perceived hazard in response to warning components and configurations: US vs. China. Appl. Ergonom., 40, 953–961. doi: 10.1016/j.apergo.2009.02.004
[24] Macintosh, A., 2013: Coastal climate hazards and urban planning: how planning responses can lead to maladaptation. Mitigat. Adapt. Strat. Global Change, 18, 1035–1055. doi: 10.1007/s11027-012-9406-2
[25] Morss, R. E., J. L. Demuth, and J. K. Lazo, 2008: Communicating uncertainty in weather forecasts: A survey of the U.S. public. Wea. Forecasting, 23, 974–991. doi: 10.1175/2008WAF2007088.1
[26] Nkiaka, E., A. Taylor, A. J. Dougill, et al., 2019: Identifying user needs for weather and climate services to enhance resilience to climate shocks in sub-Saharan Africa. Environ. Res. Lett., 14, 123003. doi: 10.1088/1748-9326/ab4dfe
[27] Otto, J., C. Brown, C. Buontempo, et al., 2016: Uncertainty: Lessons learned for climate services. Bull. Amer. Meteor. Soc., 97, ES265–ES269. doi: 10.1175/BAMS-D-16-0173.1
[28] Ripberger, J. T., C. L. Silva, H. C. Jenkins-Smith, et al., 2015: False alarms and missed events: The impact and origins of perceived inaccuracy in tornado warning systems. Risk Anal., 35, 44–56. doi: 10.1111/risa.12262
[29] Risbey, J. S., and T. J. O’Kane, 2011: Sources of knowledge and ignorance in climate research. Climatic Change, 108, 755–773. doi: 10.1007/s10584-011-0186-6
[30] Savelli, S., and S. Joslyn, 2013: The advantages of predictive interval forecasts for non-expert users and the impact of visualizations. Appl. Cognitive Psychol., 27, 527–541. doi: 10.1002/acp.2932
[31] Sim, J., B. Saunders, J. Waterfield, et al., 2018: Can sample size in qualitative research be determined a priori? Int. J. Soc. Res. Methodol., 21, 619–634. doi: 10.1080/13645579.2018.1454643
[32] Slingo, J., and T. Palmer, 2011: Uncertainty in weather and climate prediction. Phil. Trans. Roy. Soc. A, 369, 4751–4767. doi: 10.1098/rsta.2011.0161
[33] Spiegelhalter, D., M. Pearson, and I. Short, 2011: Visualizing uncertainty about the future. Science, 333, 1393–1400. doi: 10.1126/science.1191181
[34] Stephens, E. M., T. L. Edwards, and D. Demeritt, 2012: Communicating probabilistic information from climate model ensembles—lessons from numerical weather prediction. Wiley Interdiscip. Rev.: Climate Change, 3, 409–426. doi: 10.1002/wcc.187
[35] Sun, L. D., Z. Tian, H. Zou, et al., 2019: An index-based assessment of perceived climate risk and vulnerability for the urban cluster in the Yangtze River Delta region of China. Sustainability, 11, 2099. doi: 10.3390/su11072099
[36] Taylor, A. L., S. Dessai, and W. Bruine de Bruin, 2015: Communicating uncertainty in seasonal and interannual climate forecasts in Europe. Philos. Trans. Roy. Soc. A, 373, 20140454. doi: 10.1098/rsta.2014.0454
[37] Taylor, A. L., A. Kause, B. Summers, et al., 2019: Preparing for Doris: Exploring public responses to impact-based weather warnings in the United Kingdom. Wea., Climate, Soc., 11, 713–729. doi: 10.1175/WCAS-D-18-0132.1
[38] Trainor, J. E., D. Nagele, B. Philips, et al., 2015: Tornadoes, social science, and the false alarm effect. Wea., Climate, Soc., 7, 333–352. doi: 10.1175/WCAS-D-14-00052.1
[39] Verdon-Kidd, D. C., A. S. Kiem., and E. K. Austin, 2012: Decision Making Under Uncertainty: Bridging the Gap Between End user Needs and Climate Science Capability. National Climate Change Adaptation Research Facility, Gold Coast, 19–45.
[40] Wang, Y. J., L. C. Song, C. Hewitt, et al., 2020: Improving China’s resilience to climate-related risks: The China framework for climate services. Wea., Climate, Soc., 12, 729–744. doi: 10.1175/WCAS-D-19-0121.1
[41] Weyrich, P., A. Scolobig, D. N. Bresch, et al., 2018: Effects of impact-based warnings and behavioral recommendations for extreme weather events. Wea., Climate, Soc., 10, 781–796. doi: 10.1175/WCAS-D-18-0038.1
[42] White, M. P., and J. R. Eiser, 2006: Marginal trust in risk managers: Building and losing trust following decisions under uncertainty. Risk Anal., 26, 1187–1203. doi: 10.1111/j.1539-6924.2006.00807.x
[43] Wong, T. F., and Y. Y. Yan, 2002: Perceptions of severe weather warnings in Hong Kong. Meteor. Appl., 9, 377–382. doi: 10.1017/S1350482702003110