[1] Adler, R. F., G. J. Huffman, A. Chang, et al., 2003: The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4, 1147–1167. doi: 10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2
[2] Balsamo, G., C. Albergel, A. Beljaars, et al., 2015: ERA-Interim/Land: A global land surface reanalysis data set. Hydrol. Earth Syst. Sci., 19, 389–407. doi: 10.5194/hess-19-389-2015
[3] Beck, H. E., A. I. J. M. van Dijk, A. de Roo, et al., 2017: Global evaluation of runoff from 10 state-of-the-art hydrological models. Hydrol. Earth Syst. Sci., 21, 2881–2903. doi: 10.5194/hess-21-2881-2017
[4] Chen, M. Y., W. Shi, P. P. Xie, et al., 2008: Assessing objective techniques for gauge-based analyses of global daily precipitation. J. Geophys. Res. Atmos., 113, D04110. doi: 10.1029/2007JD009132
[5] Dai, Y. J., W. Shangguan, Q. Y. Duan, et al., 2013: Development of a China dataset of soil hydraulic parameters using pedotransfer functions for land surface modeling. J. Hydrometeor., 14, 869–887. doi: 10.1175/Jhm-D-12-0149.1
[6] Ebita, A., S. Kobayashi, Y. Ota, et al., 2011: The Japanese 55-year reanalysis “JRA-55”: An interim report. SOLA, 7, 149–152. doi: 10.2151/sola.2011-038
[7] Fekete, B. M., C. J. Vörösmarty, and W. Grabs, 2002: High-resolution fields of global runoff combining observed river discharge and simulated water balances. Glob. Biogeochem. Cycles, 16, 1042. doi: 10.1029/1999gb001254
[8] Fekete, B. M., C. J. Vörösmarty, J. O. Roads, et al., 2004: Uncertainties in precipitation and their impacts on runoff estimates. J. Climate, 17, 294–304. doi: 10.1175/1520-0442(2004)017<0294:Uipati>2.0.Co;2
[9] Gao, X. J., M. L. Wang, and G. Filippo, 2013: Climate change over China in the 21st century as simulated by BCC_CSM1.1-RegCM4.0. Atmos. Ocean. Sci. Lett., 6, 381–386. doi: 10.3878/j.issn.1674-2834.13.0029
[10] Gelaro, R., W. McCarty, M. J. Suárez, et al., 2017: The Modern-Era Retrospective analysis for Research and Applications, version 2 (MERRA-2). J. Climate, 30, 5419–5454. doi: 10.1175/Jcli-D-16-0758.1
[11] Gordon, L. J., W. Steffen, B. F. Jönsson, et al., 2005: Human modification of global water vapor flows from the land surface. Proc. Natl. Acad. Sci. USA, 102, 7612–7617. doi: 10.1073/pnas.0500208102
[12] Huffman, G. J., R. F. Adler, D. T. Bolvin, et al., 2009: Improving the global precipitation record: GPCP version 2.1. Geophys. Res. Lett., 36, L17808. doi: 10.1029/2009gl040000
[13] Jiang, J., D. B. Jiang, and Y. H. Lin, 2015: Monsoon area and precipitation over China for 1961–2009. Chinese J. Atmos. Sci., 39, 722–730. (in Chinese) doi: 10.3878/j.issn.1006-9895.1410.14195
[14] Kang, S., and E. A. B. Eltahir, 2018: North China Plain threatened by deadly heatwaves due to climate change and irrigation. Nat. Commun., 9, 2894. doi: 10.1038/s41467-018-05252-y
[15] Kim, H., P. J.-F. Yeh, T. Oki, et al., 2009: Role of rivers in the seasonal variations of terrestrial water storage over global basins. Geophys. Res. Lett., 36, L17402. doi: 10.1029/2009gl039006
[16] Koirala, S., Y. Hirabayashi, R. Mahendran, et al., 2014: Global assessment of agreement among streamflow projections using CMIP5 model outputs. Environ. Res. Lett., 9, 064017. doi: 10.1088/1748-9326/9/6/064017
[17] Lawrence, D. M., K. W. Oleson, M. G. Flanner, et al., 2011: Parameterization improvements and functional and structural advances in version 4 of the Community Land Model. J. Adv. Model. Earth Syst., 3, M03001. doi: 10.1029/2011MS00045
[18] Li, H. Y., M. S. Wigmosta, H. Wu, et al., 2013: A physically based runoff routing model for land surface and earth system models. J. Hydrometeor., 14, 808–828. doi: 10.1175/jhm-d-12-015.1
[19] Li, H. Y., L. R. Leung, A. Getirana, et al., 2015: Evaluating global streamflow simulations by a physically based routing model coupled with the Community Land Model. J. Hydrometeor., 16, 948–971. doi: 10.1175/jhm-d-14-0079.1
[20] Liu, X. C., W. F. Liu, H. Yang, et al., 2019: Multimodel assessments of human and climate impacts on mean annual streamflow in China. Hydrol. Earth Syst. Sci., 23, 1245–1261. doi: 10.5194/hess-23-1245-2019
[21] Lohmann, D., R. Nolte-Holube, and E. Raschke, 1996: A large-scale horizontal routing model to be coupled to land surface parametrization schemes. Tellus A, 48, 708–721. doi: 10.3402/tellusa.v48i5.12200
[22] Lohmann, D., E. Raschke, B. Nijssen, et al., 1998: Regional scale hydrology: I. Formulation of the VIC-2L model coupled to a routing model. Hydrol. Sci. J., 43, 131–141. doi: 10.1080/02626669809492107
[23] Lohmann, D., K. E. Mitchell, P. R. Houser, et al., 2004: Streamflow and water balance intercomparisons of four land surface models in the North American Land Data Assimilation System project. J. Geophys. Res. Atmos., 109, D07S91. doi: 10.1029/2003jd003517
[24] Lu, X. L., Q. L. Zhuang, Y. L. Liu, et al., 2016: A large-scale methane model by incorporating the surface water transport. J. Geophys. Res. Biogeosci., 121, 1657–1674. doi: 10.1002/2016jg003321
[25] Lv, M. Z., H. Lu, K. Yang, et al., 2018: Assessment of runoff components simulated by GLDAS against UNH-GRDC dataset at global and hemispheric scales. Water, 10, 969. doi: 10.3390/w10080969
[26] Maurer, E. P., A. W. Wood, J. C. Adam, et al., 2002: A long-term hydrologically based dataset of land surface fluxes and states for the conterminous United States. J. Climate, 15, 3237–3251. doi: 10.1175/1520-0442(2002)015<3237:Althbd>2.0.Co;2
[27] Mitchell, T. D., and P. D. Jones, 2005: An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int. J. Climatol., 25, 693–712. doi: 10.1002/joc.1181
[28] Moriasi, D. N., J. G. Arnold, M. W. van Liew, et al., 2007: Model evaluation guidelines for systematic quantification of accu-racy in watershed simulations. Trans. ASABE, 50, 885–900. doi: 10.13031/2013.23153
[29] Nasonova, O. N., Y. M. Gusev, and Y. E. Kovalev, 2009: Investigating the ability of a land surface model to simulate streamflow with the accuracy of hydrological models: A case study using MOPEX materials. J. Hydrometeor., 10, 1128–1150. doi: 10.1175/2009jhm1083.1
[30] Pappenberger, F., E. Dutra, F. Wetterhall, et al., 2012: Deriving global flood hazard maps of fluvial floods through a physical model cascade. Hydrol. Earth Syst. Sci., 16, 4143–4156. doi: 10.5194/hess-16-4143-2012
[31] Peng, D. D., and T. J. Zhou, 2017: Why was the arid and semiarid Northwest China getting wetter in the recent decades? J. Geophys. Res. Atmos., 122, 9060–9075. doi: 10.1002/2016JD026424
[32] Reichle, R. H., C. S. Draper, Q. Liu, et al., 2017: Assessment of MERRA-2 land surface hydrology estimates. J. Climate, 30, 2937–2960. doi: 10.1175/JCLI-D-16-0720.1
[33] Rienecker, M. M., M. J. Suarez, R. Gelaro, et al., 2011: MERRA: NASA’s Modern-Era Retrospective analysis for Research and Applications. J. Climate, 24, 3624–3648. doi: 10.1175/JCLI-D-11-00015.1
[34] Scanlon, B. R., Z. Z. Zhang, H. Save, et al., 2018: Global models underestimate large decadal declining and rising water storage trends relative to GRACE satellite data. Proc. Natl. Acad. Sci. USA, 115, E1080–E1089. doi: 10.1073/pnas.1704665115
[35] Senatore, A., G. Mendicino, D. J. Gochis, et al., 2015: Fully coupled atmosphere–hydrology simulations for the central Mediterranean: Impact of enhanced hydrological parameterization for short and long time scales. J. Adv. Model. Earth Syst., 7, 1693–1715. doi: 10.1002/2015MS000510
[36] Sheffield, J., G. Goteti, and E. F. Wood, 2006: Development of a 50-year high-resolution global dataset of meteorological forcings for land surface modeling. J. Climate, 19, 3088–3111. doi: 10.1175/Jcli3790.1
[37] Sheng, M. Y., H. M. Lei, Y. Jiao, et al., 2017: Evaluation of the runoff and river routing schemes in the Community Land Model of the Yellow River basin. J. Adv. Model. Earth Syst., 9, 2993–3018. doi: 10.1002/2017ms001026
[38] Sood, A., and V. Smakhtin, 2015: Global hydrological models: A review. Hydrol. Sci. J., 60, 549–565. doi: 10.1080/02626667.2014.950580
[39] Wang, A. H., and X. B. Zeng, 2011: Sensitivities of terrestrial water cycle simulations to the variations of precipitation and air temperature in China. J. Geophys. Res. Atmos., 116, D02107. doi: 10.1029/2010jd014659
[40] Wang, A. H., and X. B. Zeng, 2012: Evaluation of multireanalysis products with in situ observations over the Tibetan Plateau. J. Geophys. Res. Atmos., 117, D05102. doi: 10.1029/2011JD016553
[41] Wang, A. H., X. B. Zeng, and D. L. Guo, 2016: Estimates of glo-bal surface hydrology and heat fluxes from the Community Land Model (CLM4.5) with four atmospheric forcing datasets. J. Hydrometeor., 17, 2493–2510. doi: 10.1175/JHM-D-16-0041.1
[42] Wang, Y. P., W. W. Zhao, S. Wang, et al., 2019: Yellow River water rebalanced by human regulation. Sci. Rep., 9, 9707. doi: 10.1038/s41598-019-46063-5
[43] Wei, S. G., Y. J. Dai, B. Y. Liu, et al., 2013: A China data set of soil properties for land surface modeling. J. Adv. Model. Earth Syst., 5, 212–224. doi: 10.1002/jame.20026
[44] Wu, H., R. F. Adler, Y. D. Tian, et al., 2014: Real-time global flood estimation using satellite-based precipitation and a coupled land surface and routing model. Water Resour. Res., 50, 2693–2717. doi: 10.1002/2013wr014710
[45] Wu, J., and X. J. Gao, 2013: A gridded daily observation dataset over China region and comparison with the other datasets. Chinese J. Geophys., 56, 1102–1111. (in Chinese) doi: 10.6038/cjg20130406
[46] Wu, S. S., Z. J. Yao, H. Q. Huang, et al., 2013: Glacier retreat and its effect on stream flow in the source region of the Yangtze River. J. Geogr. Sci., 23, 849–859. doi: 10.1007/s11442-013-1048-0
[47] Xia, Y. L., K. Mitchell, M. Ek, et al., 2012: Continental-scale water and energy flux analysis and validation for the North American Land Data Assimilation System project phase 2 (NLDAS-2): 1. Intercomparison and application of model products. J. Geophys. Res. Atmos., 117, D03109. doi: 10.1029/2011JD016048
[48] Xia, Y. L., D. M. Mocko, S. G. Wang, et al., 2018: Comprehensive evaluation of the Variable Infiltration Capacity (VIC) model in the North American land data assimilation system. J. Hydrometeor., 19, 1853–1879. doi: 10.1175/jhm-d-18-0139.1
[49] Xie, P. P., and P. A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78, 2539–2558. doi: 10.1175/1520-0477(1997)078<2539:Gpayma>2.0.Co;2
[50] Xie, P. P., A. Yatagai, M. Y. Chen, et al., 2007: A gauge-based analysis of daily precipitation over East Asia. J. Hydrometeor., 8, 607–626. doi: 10.1175/Jhm583.1
[51] Yamazaki, D., S. Kanae, H. Kim, et al., 2011: A physically based description of floodplain inundation dynamics in a global river routing model. Water Resour. Res., 47, W04501. doi: 10.1029/2010wr009726
[52] Yamazaki, D., H. Lee, D. E. Alsdorf, et al., 2012: Analysis of the water level dynamics simulated by a global river model: A case study in the Amazon River. Water Resour. Res., 48, W09508. doi: 10.1029/2012wr011869
[53] Yamazaki, D., G. A. M. de Almeida, and P. D. Bates, 2013: Improving computational efficiency in global river models by implementing the local inertial flow equation and a vector-based river network map. Water Resour. Res., 49, 7221–7235. doi: 10.1002/wrcr.20552
[54] Yamazaki, D., F. O’Loughlin, M. A. Trigg, et al., 2014: Development of the global width database for large rivers. Water Resour. Res., 50, 3467–3480. doi: 10.1002/2013wr014664
[55] Yao, S. B., D. B. Jiang, and G. Z. Fan, 2017: Seasonality of precipitation over China. Chinese J. Atmos. Sci., 41, 1191–1203. (in Chinese) doi: 10.3878/j.issn.1006-9895.1703.16233
[56] Zhang, X. J., Q. H. Tang, M. Pan, et al., 2014: A long-term land surface hydrologic fluxes and states dataset for China. J. Hydrometeor., 15, 2067–2084. doi: 10.1175/Jhm-D-13-0170.1
[57] Zhang, Y. Q., H. X. Zheng, F. H. S. Chiew, et al., 2016: Evaluating regional and global hydrological models against streamflow and evapotranspiration measurements. J. Hydrometeor., 17, 995–1010. doi: 10.1175/jhm-d-15-0107.1
[58] Zhou, X. Y., Y. Q. Zhang, Y. P. Wang, et al., 2012: Benchmarking global land surface models against the observed mean annual runoff from 150 large basins. J. Hydrol., 470–471, 269–279. doi: 10.1016/j.jhydrol.2012.09.002
[59] Zhu, C. M., and D. P. Lettenmaier, 2007: Long-term climate and derived surface hydrology and energy flux data for Mexico: 1925–2004. J. Climate, 20, 1936–1946. doi: 10.1175/JCLI4086.1