[1] Aebischer, U., and C. Schär, 1998: Low-level potential vorticity and cyclogenesis to the lee of the Alps. J. Atmos. Sci., 55, 186–207. doi: 10.1175/1520-0469(1998)055<0186:LLPVAC>2.0.CO;2
[2] Atkins, N. T., J. M. Arnott, R. W. Przybylinski, et al., 2004: Vortex structure and evolution within bow echoes. Part I: Single-Doppler and damage analysis of the 29 June 1998 derecho. Mon. Wea. Rev., 132, 2224–2242. doi: 10.1175/1520-0493(2004)132<2224:VSAEWB>2.0.CO;2
[3] Atkins, N. T., C. S. Bouchard, R. W. Przybylinski, et al., 2005: Damaging surface wind mechanisms within the 10 June 2003 Saint Louis bow echo during BAMEX. Mon. Wea. Rev., 133, 2275–2296. doi: 10.1175/MWR2973.1
[4] Botzen, W. J. W., L. M. Bouwer, and J. C. J. M. van den Bergh, 2010: Climate change and hailstorm damage: Empirical evidence and implications for agriculture and insurance. Resour. Energy Econ., 32, 341–362. doi: 10.1016/j.reseneeco.2009.10.004
[5] Browning, K. A., and G. B. Foote, 1976: Airflow and hail growth in supercell storms and some implications for hail suppression. Quart. J. Roy. Meteor. Soc., 102, 499–533. doi: 10.1002/qj.49710243303
[6] Buban, M. S., C. L. Ziegler, E. R. Mansell, et al., 2012: Simulation of dryline misovortex dynamics and cumulus formation. Mon. Wea. Rev., 140, 3525–3551. doi: 10.1175/MWR-D-11-00189.1
[7] Cerniglia, C. S., and W. R. Snyder, 2002: Development of Warning Criteria for Severe Pulse Thunderstorms in the Northeastern United States Using the WSR-88D. Eastern Region Technical Attachment, No. 2002-03, NOAA, Albany, NY, 14 pp.
[8] Chevuturi, A., A. P. Dimri, and U. B. Gunturu, 2014: Numerical simulation of a rare winter hailstorm event over Delhi, India on 17 January 2013. Nat. Hazards Earth Syst. Sci., 14, 3331–3344. doi: 10.5194/nhess-14-3331-2014
[9] Craven, J. P., H. E. Brooks, and J. A. Hart, 2002: Baseline climatology of sounding derived parameters associated with deep, moist convection. Proceedings of the 21st Conference on Severe Local Storms, American Meteorological Society, San Antonio, TX, 642–650.
[10] Donavon, R. A., and K. A. Jungbluth, 2007: Evaluation of a technique for radar identification of large hail across the upper Midwest and central plains of the United States. Wea. Forecasting, 22, 244–254. doi: 10.1175/WAF1008.1
[11] Dudhia, J., 1989: Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 3077–3107. doi: 10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2
[12] Fang, W., G. G. Zheng, and Z. J. Hu, 2005: Numerical simulations of the physical process for hailstone growth. Acta Meteor. Sinica, 19, 93–101.
[13] Fankhauser, J. C., N. A. Crook, J. Tuttle, et al., 1995: Initiation of deep convection along boundary layer convergence lines in a semitropical environment. Mon. Wea. Rev., 123, 291–314. doi: 10.1175/1520-0493(1995)123<0291:IODCAB>2.0.CO;2
[14] Farley, R. D., 1987: Numerical modeling of hailstorms and hailstone growth. Part III: Simulation of an Alberta hailstorm—Natural and seeded cases. J. Climate Appl. Meteor., 26, 789–812. doi: 10.1175/1520-0450(1987)026<0789:NMOHAH>2.0.CO;2
[15] García-Ortega, E., L. Fita, R. Romero, et al., 2007: Numerical simulation and sensitivity study of a severe hailstorm in northeast Spain. Atmos. Res., 83, 225–241. doi: 10.1016/j.atmosres.2005.08.004
[16] Gilchrist, B., and G. P. Cressman, 1954: An experiment in objective analysis. Tellus, 6, 309–318. doi: 10.1111/j.2153-3490.1954.tb01126.x
[17] Grell, G. A., and D. Dévényi, 2002: A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophys. Res. Lett., 29, 1693. doi: 10.1029/2002GL015311
[18] Guo, X. L., and M. Y. Huang, 2002: Hail formation and growth in a 3D cloud model with hail-bin microphysics. Atmos. Res., 63, 59–99. doi: 10.1016/S0169-8095(02)00019-4
[19] Harrison, S. J., J. R. Mecikalski, and K. R. Knupp, 2009: Analysis of outflow boundary collisions in north-central Alabama. Wea. Forecasting, 24, 1680–1690. doi: 10.1175/2009WAF2222268.1
[20] Heymsfield, A. J., A. R. Jameson, and H. W. Frank, 1980: Hail growth mechanisms in a Colorado storm: Part II: Hail formation processes. J. Atmos. Sci., 37, 1779–1807. doi: 10.1175/1520-0469(1980)037<1779:HGMIAC>2.0.CO;2
[21] Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 2318–2341. doi: 10.1175/MWR3199.1
[22] Hong, Y. C., and P. Fan, 1999: Numerical simulation study of hail cloud—Part I: The numerical model. Acta Meteor. Sinica, 13, 188–199.
[23] Huang, X. L., and L. Gao, 2016: Mesoanalysis of a hail process in Taizhou on 19 March 2014. Meteor. Mon., 42, 696–708. (in Chinese)
[24] Kennedy, P. C., S. A. Rutledge, B. Dolan, et al., 2014: Observations of the 14 July 2011 Fort Collins hailstorm: Implications for WSR-88D-based hail detection and warnings. Wea. Forecasting, 29, 623–638. doi: 10.1175/WAF-D-13-00075.1
[25] Klemp, J. B., W. C. Skamarock, and J. Dudhia, 2007: Conservative split-explicit time integration methods for the compressible nonhydrostatic equations. Mon. Wea. Rev., 135, 2897–2913. doi: 10.1175/MWR3440.1
[26] Knievel, J. C., and R. H. Johnson, 2003: A scale-discriminating vorticity budget for a mesoscale vortex in a midlatitude, continental mesoscale convective system. J. Atmos. Sci., 60, 781–794. doi: 10.1175/1520-0469(2003)060<0781:ASDVBF>2.0.CO;2
[27] Knight, C. A., and N. C. Knight, 2001: Hailstorms. Severe Convective Storms, Doswell III, C. A., Ed., American Meteorological Society, Boston, 562 pp.
[28] Kosiba, K., J. Wurman, Y. Richardson, et al., 2013: Genesis of the Goshen County, Wyoming, tornado on 5 June 2009 during VORTEX2. Mon. Wea. Rev., 141, 1157–1181. doi: 10.1175/MWR-D-12-00056.1
[29] Kunz, M., J. Sander, and C. Kottmeier, 2009: Recent trends of thunderstorm and hailstorm frequency and their relation to atmospheric characteristics in southwest Germany. Int. J. Climatol., 29, 2283–2297. doi: 10.1002/joc.1865
[30] Lee, B. D., R. D. Farley, and M. R. Hjelmfelt, 1991: A numerical case study of convection initiation along colliding convergence boundaries in northeast Colorado. J. Atmos. Sci., 48, 2350–2366. doi: 10.1175/1520-0469(1991)048<2350:ANCSOC>2.0.CO;2
[31] Levinson, D. H., and R. M. Banta, 1995: Observations of a terrain-forced mesoscale vortex and canyon drainage flows along the Front Range of Colorado. Mon. Wea. Rev., 123, 2029–2050. doi: 10.1175/1520-0493(1995)123<2029:OOATFM>2.0.CO;2
[32] Li, B., X. F. Xu, and K. Zhou, 2002: Numerical simulations and Doppler radar data analysis of a hail process in Huaihe River Basin. Acta Meteor. Sinica, 16, 388–400.
[33] Locatelli, J. D., R. D. Schwartz, M. T. Stoelinga, et al., 2002: Norwegian-type and cold front aloft–type cyclones east of the Rocky Mountains. Wea. Forecasting, 17, 66–82. doi: 10.1175/1520-0434(2002)017<0066:NTACFA>2.0.CO;2
[34] Luo, L. P., M. Xue, K. F. Zhu, et al., 2017: Explicit prediction of hail using multimoment microphysics schemes for a hailstorm of 19 March 2014 in eastern China. J. Geophys. Res. Atmos., 122, 7560–7581. doi: 10.1002/2017JD026747
[35] Markowski, P., and Y. Richardson, 2010: Mesoscale Meteorology in Midlatitudes. Wiley Press, Chichester, UK, 430 pp, doi: 10.1002/9780470682104.
[36] Markowski, P. M., and Y. P. Richardson, 2017: Large sensitivity of near-surface vertical vorticity development to heat sink location in idealized simulations of supercell-like storms. J. Atmos. Sci., 74, 1095–1104. doi: 10.1175/JAS-D-16-0372.1
[37] Milbrandt, J. A., and M. K. Yau, 2005a: A multimoment bulk microphysics parameterization. Part I: Analysis of the role of the spectral shape parameter. J. Atmos. Sci., 62, 3051–3064. doi: 10.1175/JAS3534.1
[38] Milbrandt, J. A., and M. K. Yau, 2005b: A multimoment bulk microphysics parameterization. Part II: A proposed three-moment closure and scheme description. J. Atmos. Sci., 62, 3065–3081. doi: 10.1175/JAS3535.1
[39] Miller, P. W., and T. L. Mote, 2017: Standardizing the definition of a “pulse” thunderstorm. Bull. Amer. Meteor. Soc., 98, 905–913. doi: 10.1175/BAMS-D-16-0064.1
[40] Mlawer, E. J., S. J. Taubman, P. D. Brown, et al., 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res. Atmos., 102, 16663–16682. doi: 10.1029/97JD00237
[41] Nelson, S. P., 1983: The influence of storm flow structure on hail growth. J. Atmos. Sci., 40, 1965–1983. doi: 10.1175/1520-0469(1983)040<1965:TIOSFS>2.0.CO;2
[42] Niall, S., and K. Walsh, 2005: The impact of climate change on hailstorms in southeastern Australia. Int. J. Climatol., 25, 1933–1952. doi: 10.1002/joc.1233
[43] Orlanski, I., 1975: A rational subdivision of scales for atmospheric processes. Bull. Amer. Meteor. Soc., 56, 527–530. doi: 10.1175/1520-0477-56.5.527
[44] Orville, H. D., 1977: A review of hailstone-hailstorm numerical simulations. Hail: A Review of Hail Science and Hail Suppression, Foote, G. B., and C. A. Knight, Eds., American Meteorological Society, Boston, MA, 49–64, doi: 10.1007/978-1-935704-30-0_2.
[45] Orville, H. D., and F. J. Kopp, 1977: Numerical simulation of the life history of a hailstorm. J. Atmos. Sci., 34, 1596–1618. doi: 10.1175/1520-0469(1977)034<1596:NSOTLH>2.0.CO;2
[46] Schemm, S., L. Nisi, A. Martinov, et al., 2016: On the link between cold fronts and hail in Switzerland. Atmos. Sci. Lett., 17, 315–325. doi: 10.1002/asl.660
[47] Shapiro, R., 1970: Smoothing, filtering, and boundary effects. Rev. Geophys., 8, 359–387. doi: 10.1029/RG008i002p00359
[48] Shuman, F. G., 1957: Numerical methods in weather prediction: II. Smoothing and filtering. Mon. Wea. Rev., 85, 357–361. doi: 10.1175/1520-0493(1957)085<0357:NMIWPI>2.0.CO;2
[49] Skamarock, W. C., J. B. Klemp, J. Dudhia, et al., 2005: A Description of the Advanced Research WRF Version 2. NCAR Tech. Note NCAR/TN-468+STR, NCAR, Boulder, Colorado, USA, 100 pp.
[50] Speer, M. S., L. M. Leslie, L. Qi, et al., 2004: Urban scale modelling: The Sydney hailstorm of 14 April 1999. Meteor. Atmos. Phys., 87, 161–166. doi: 10.1007/s00703-003-0069-0
[51] Sun, Y. X., and J. Fang, 2013: Numerical study on the initiation of the severe convective weather in Chongqing on 6 May 2010. Acta Meteor. Sinica, 27, 364–378. doi: 10.1007/s13351-013-0308-3
[52] Trier, S. B., W. C. Skamarock, and M. A. LeMone, 1997: Structure and evolution of the 22 February 1993 TOGA COARE squall line: Organization mechanisms inferred from numerical simulation. J. Atmos. Sci., 54, 386–407. doi: 10.1175/1520-0469(1997)054<0386:SAEOTF>2.0.CO;2
[53] Wang, L., C. Zhu, and W.-T. Yun, 2007: Improvement of model forecast on the Asian summer rainfall anomaly with the application of a spatial filtering scheme. Theor. Appl. Climatol., 88, 225–230. doi: 10.1007/s00704-006-0240-x
[54] Wang, X. M., X. G. Zhou, Z. Y. Tao, et al., 2016: Discussion on the complete-form vorticity equation and slantwise vorticity development. J. Meteor. Res., 30, 67–75. doi: 10.1007/s13351-016-5040-3
[55] Wilson, J. W., and W. E. Schreiber, 1986: Initiation of convective storms at radar-observed boundary-layer convergence lines. Mon. Wea. Rev., 114, 2516–2536. doi: 10.1175/1520-0493(1986)114<2516:IOCSAR>2.0.CO;2
[56] Wilson, J. W., G. B. Foote, N. A. Cṙook, et al., 1992: The role of boundary-layer convergence zones and horizontal rolls in the initiation of thunderstorms: A case study. Mon. Wea. Rev., 120, 1785–1815. doi: 10.1175/1520-0493(1992)120<1785:TROBLC>2.0.CO;2
[57] Witt, A., and S. P. Nelson, 1991: The use of single-Doppler radar for estimating maximum hailstone size. J. Appl. Meteor., 30, 425–431. doi: 10.1175/1520-0450(1991)030<0425:TUOSDR>2.0.CO;2
[58] Xu, X., M. Xue, and Y. Wang, 2015: Mesovortices within the 8 May 2009 bow echo over the central United States: Analyses of the characteristics and evolution based on Doppler radar observations and a high-resolution model simulation. Mon. Wea. Rev., 143, 2266–2290. doi: 10.1175/MWR-D-14-00234.1
[59] Yu, X. D., and Y. G. Zheng, 2020: Advances in severe convection research and operation in China. J. Meteor. Res., 34, 189–217. doi: 10.1007/s13351-020-9875-2
[60] Zhai, G. Q., H. L. Zhang, H. F. Shen, et al., 2015: Role of a meso-γ vortex in Meiyu torrential rainfall over the Hangzhou Bay, China: An observational study. J. Meteor. Res., 29, 966–980. doi: 10.1007/s13351-015-5029-3
[61] Zhang, C. X., Q. H. Zhang, and Y. Q. Wang, 2008: Climatology of hail in China: 1961–2005. J. Appl. Meteor. Climatol., 47, 795–804. doi: 10.1175/2007JAMC1603.1
[62] Zhang, D.-L., 1992: The formation of a cooling-induced mesovortex in the trailing stratiform region of a midlatitude squall line. Mon. Wea. Rev., 120, 2763–2785. doi: 10.1175/1520-0493(1992)120<2763:TFOACI>2.0.CO;2
[63] Zhang, W. H., and L. Li, 2019: A preliminary application of artificial intelligence on the detection and nowcasting of hail weather. Acta Meteor. Sinica, 77, 282–291. (in Chinese) doi: 10.11676/qxxb2019.014
[64] Zhang, X. L., J. H. Sun, Y. G. Zheng, et al., 2020: Progress in severe convective weather forecasting in China since the 1950s. J. Meteor. Res., 34, 699–719. doi: 10.1007/s13351-020-9146-2
[65] Zhou, K. H., Y. G. Zheng, B. Li, et al., 2019: Forecasting different types of convective weather: A deep learning approach. J. Meteor. Res., 33, 797–809. doi: 10.1007/s13351-019-8162-6