[1] Bennartz, R., A. Thoss, A. Dybbroe, et al., 2002: Precipitation analysis using the Advanced Microwave Sounding Unit in support of nowcasting applications. Meteor. Appl., 9, 177–189. doi: 10.1017/S1350482702002037
[2] Bormann, N., A. Fouilloux, and W. Bell, 2013: Evaluation and assimilation of ATMS data in the ECMWF system. J. Geophys. Res. Atmos., 118, 12970–12980. doi: 10.1002/2013JD020325
[3] Boukabara, S.-A., K. Garrett, W. C. Chen, et al., 2011: MiRS: An all-weather 1DVAR satellite data assimilation and retrieval system. IEEE Trans. Geosci. Remote Sens., 49, 3249–3272. doi: 10.1109/TGRS.2011.2158438
[4] Chen, H., and D.-L. Zhang, 2013: On the rapid intensification of Hurricane Wilma (2005). Part II: Convective bursts and the upper-level warm core. J. Atmos. Sci., 70, 146–162. doi: 10.1175/jas-d-12-062.1
[5] Chen, H., D.-L. Zhang, J. Carton, et al., 2011: On the rapid intensification of Hurricane Wilma (2005). Part I: Model prediction and structural changes. Wea. Forecasting, 26, 885–901. doi: 10.1175/waf-d-11-00001.1
[6] Geer, A. J., P. Bauer, and P. Lopez, 2008: Lessons learnt from the operational 1D + 4D-Var assimilation of rain- and cloud-affected SSM/I observations at ECMWF. Quart. J. Roy. Meteor. Soc., 134, 1513–1525. doi: 10.1002/qj.304
[7] Grody, N., J. Zhao, R. Ferraro, et al., 2001: Determination of precipitable water and cloud liquid water over oceans from the NOAA 15 Advanced Microwave Sounding Unit. J. Geophys. Res. Atmos., 106, 2943–2953. doi: 10.1029/2000JD900616
[8] Han, Y., and F. Z. Weng, 2018: Remote sensing of tropical cyclone thermal structure from satellite microwave sounding instruments: Impacts of optimal channel selection on retrievals. J. Meteor. Res., 32, 804–818. doi: 10.1007/s13351-018-8005-x
[9] Hawkins, H. F., and D. T. Rubsam, 1968: Hurricane Hilda, 1964: II. Structure and budgets of the hurricane on October 1, 1964. Mon. Wea. Rev., 96, 617–636. doi: 10.1175/1520-0493(1968)096<0617:hh>2.0.co;2
[10] Hawkins, H. F., and S. M. Imbembo, 1976: The structure of a small, intense hurricane—Inez 1966. Mon. Wea. Rev., 104, 418–442. doi: 10.1175/1520-0493(1976)104<0418:tsoasi>2.0.co;2
[11] Houze, R. A., Jr., 2014: Cloud Dynamics. 2nd ed. Elsevier/Academic Press, Oxford, 432 pp.
[12] JPSS ATMS SDR Science Team, 2013: Joint Polar Satellite System (JPSS) Advanced Technology Microwave Sounder (ATMS) SDR Calibration Algorithm Theoretical Basis Document (ATBD). E/RA-00001, Center for Satellite Applications and Research, Maryland, 41 pp. Available at www.star.nesdis.noaa.gov/jpss/documents/ATBD. Accessed on 28 December 2018.
[13] Knaff, J. A., R. M. Zehr, M. D. Goldberg, et al., 2000: An example of temperature structure differences in two cyclone systems derived from the Advanced Microwave Sounder Unit. Wea. Forecasting, 15, 476–483. doi: 10.1175/1520-0434(2000)015<0476:AEOTSD>2.0.CO;2
[14] Knaff, J. A., S. A. Seseske, M. DeMaria, et al., 2004: On the influences of vertical wind shear on symmetric tropical cyclone structure derived from AMSU. Mon. Wea. Rev., 132, 2503–2510. doi: 10.1175/1520-0493(2004)132<2503:OTIOVW>2.0.CO;2
[15] LaSeur, N. E., and H. F. Hawkins, 1963: An analysis of Hurricane Cleo (1958) based on data from research reconnaissance aircraft. Mon. Wea. Rev., 91, 694–709. doi: 10.1175/1520-0493(1963)091<0694:aaohcb>2.3.co;2
[16] Lin, L., and F. Z. Weng, 2018: Estimation of hurricane maximum wind speed using temperature anomaly derived from Advanced Technology Microwave Sounder. IEEE Geosci. Remote Sens. Lett., 15, 639–643. doi: 10.1109/LGRS.2018.2807763
[17] Liu, Q. H., and F. Z. Weng, 2005: One-dimensional variational retrieval algorithm of temperature, water vapor, and cloud water profiles from Advanced Microwave Sounding Unit (AMSU). IEEE Trans. Geosci. Remote Sens., 43, 1087–1095. doi: 10.1109/TGRS.2004.843211
[18] Lloyd, S., 1982: Least squares quantization in PCM. IEEE Trans. Inf. Theory, 28, 129–137. doi: 10.1109/TIT.1982.1056489
[19] Matricardi, M., F. Chevallier, G. Kelly, et al., 2004: An improved general fast radiative transfer model for the assimilation of radiance observations. Quart. J. Roy. Meteor. Soc., 130, 153–173. doi: 10.1256/qj.02.181
[20] Saunders, R., M. Matricardi, and P. Brunel, 1999: An improved fast radiative transfer model for assimilation of satellite radiance observations. Quart. J. Roy. Meteor. Soc., 125, 1407–1425. doi: 10.1002/qj.1999.49712555615
[21] Stern, D. P., and D. S. Nolan, 2012: On the height of the warm core in tropical cyclones. J. Atmos. Sci., 69, 1657–1680. doi: 10.1175/jas-d-11-010.1
[22] Stern, D. P., and F. Q. Zhang, 2016: The warm-core structure of Hurricane Earl (2010). J. Atmos. Sci., 73, 3305–3328. doi: 10.1175/jas-d-15-0328.1
[23] Tian, X. X., and X. L. Zou, 2016: ATMS- and AMSU-A-derived hurricane warm core structures using a modified retrieval algorithm. J. Geophys. Res. Atmos., 121, 12630–12646. doi: 10.1002/2016JD025042
[24] Wang, R., and Y. F. Fu, 2017: Structural characteristics of atmospheric temperature and humidity inside clouds of convective and stratiform precipitation in the rainy season over East Asia. J. Meteor. Res., 31, 890–905. doi: 10.1007/s13351-017-7038-x
[25] Weng, F. Z., X. L. Zou, N. H. Sun, et al., 2013: Calibration of Suomi national polar-orbiting partnership advanced technology microwave sounder. J. Geophys. Res. Atmos., 118, 11,187–11,200. doi: 10.1002/jgrd.50840
[26] Zhu, T., and F. Z. Weng, 2013: Hurricane Sandy warm-core structure observed from Advanced Technology Microwave Sounder. Geophys. Res. Lett., 40, 3325–3330. doi: 10.1002/grl.50626
[27] Zhu, T., D.-L. Zhang, and F. Z. Weng, 2002: Impact of the advanced microwave sounding unit measurements on hurricane prediction. Mon. Wea. Rev., 130, 2416–2432. doi: 10.1175/1520-0493(2002)130<2416:iotams>2.0.co;2
[28] Zou, X., F. Weng, B. Zhang, et al., 2013: Impacts of assimilation of ATMS data in HWRF on track and intensity forecasts of 2012 four landfall hurricanes. J. Geophys. Res. Atmos., 118, 11,558–11,576. doi: 10.1002/2013JD020405