[1] Arsenault, K. R., G. S. Nearing, S. G. Wang, et al., 2018: Parameter sensitivity of the Noah-MP land surface model with dynamic vegetation. J. Hydrometeorol., 19, 815–830. doi: 10.1175/JHM-D-17-0205.1
[2] Beringer, J., S. McIlwaine, A. Lynch, et al., 2002: The use of a reduced form model to assess the sensitivity of a land surface model to biotic surface parameters. Climate Dyn., 19, 455–466. doi: 10.1007/s00382-002-0237-9
[3] Cai, X. T., W. J. Riley, Q. Zhu, et al., 2019: Improving representation of deforestation effects on evapotranspiration in the E3SM land model. J. Adv. Model. Earth Syst., 11, 2412–2427. doi: 10.1029/2018MS001551
[4] Collatz, G. J., J. T. Ball, C. Grivet, et al., 1991: Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration: A model that includes a laminar boundary layer. Agric. For. Meteor., 54, 107–136. doi: 10.1016/0168-1923(91)90002-8
[5] Collins, D. C., and R. Avissar, 1994: An evaluation with the Fourier amplitude sensitivity test (FAST) of which land-surface parameters are of greatest importance in atmospheric modeling. J. Climate, 7, 681–703. doi: 10.1175/1520-0442(1994)007<0681:AEWTFA>2.0.CO;2
[6] Felfelani, F., Y. Pokhrel, K. Y. Guan, et al., 2018: Utilizing SMAP soil moisture data to constrain irrigation in the Community Land Model. Geophys. Res. Lett., 45, 12892–12902. doi: 10.1029/2018GL080870
[7] Gao, Y. H., K. Li, F. Chen, et al., 2015: Assessing and improving Noah-MP land model simulations for the central Tibetan Plateau. J. Geophys. Res. Atmos., 120, 9258–9278. doi: 10.1002/2015JD023404
[8] Jiang, C., and L. B. Zhang, 2016: Ecosystem change assessment in the Three-river Headwater Region, China: Patterns, causes, and implications. Ecol. Eng., 93, 24–36. doi: 10.1016/j.ecoleng.2016.05.011
[9] Lawrence, D. M., G. C. Hurtt, A. Arneth, et al., 2016: The Land Use Model Intercomparison Project (LUMIP) contribution to CMIP6: Rationale and experimental design. Geosci. Model Dev., 9, 2973–2998. doi: 10.5194/gmd-9-2973-2016
[10] Li, H. Y., C. B. Fu, and W. D. Guo, 2017: An integrated evaluation of land surface energy fluxes over China in seven reanalysis/modeling products. J. Geophys. Res. Atmos., 122, 8543–8566. doi: 10.1002/2016JD026166
[11] Lu, H., T. Koike, K. Yang, et al., 2012: Improving land surface soil moisture and energy flux simulations over the Tibetan Plateau by the assimilation of the microwave remote sensing data and the GCM output into a land surface model. Int. J. Appl. Earth Observat. Geoinformat., 17, 43–54. doi: 10.1016/j.jag.2011.09.006
[12] Luo, S. Q., X. W. Fang, S. H. Lyu, et al., 2017: Improving CLM4.5 simulations of land–atmosphere exchange during freeze–thaw processes on the Tibetan Plateau. J. Meteor. Res., 31, 916–930. doi: 10.1007/s13351-017-6063-0
[13] Medlyn, B. E., R. A. Duursma, D. Eamus, et al., 2011: Reconciling the optimal and empirical approaches to modelling stomatal conductance. Glob. Change Biol., 17, 2134–2144. doi: 10.1111/j.1365-2486.2010.02375.x
[14] Oleson, K. W., D. M. Lawrence, G. B. Bonan, et al., 2013: Technical Description of Version 4.5 of the Community Land Model (CLM). NCAR Technical Note No. NCAR/TN-503+STR, NCAR, Boulder, CO, 434 pp, doi: 10.5065/D6RR1W7M.
[15] Peng, F., and G. D. Sun, 2019: Identifying sensitive model parameter combinations for uncertainties in land surface process simulations over the Tibetan Plateau. Water, 11, 1724. doi: 10.3390/w11081724
[16] Peng, F., M. Mu, and G. D. Sun, 2020: Evaluations of uncertainty and sensitivity in soil moisture modeling on the Tibetan Plateau. Tellus A, 72, 1–16. doi: 10.1080/16000870.2019.1704963
[17] Rakovec, O., M. C. Hill, M. P. Clark, et al., 2014: Distributed Evaluation of Local Sensitivity Analysis (DELSA), with application to hydrologic models. Water Resour. Res., 50, 409–426. doi: 10.1002/2013WR014063
[18] Razavi, S., and H. V. Gupta, 2015: What do we mean by sensitivity analysis? The need for comprehensive characterization of “global” sensitivity in earth and environmental systems models. Water Resour. Res., 51, 3070–3092. doi: 10.1002/2014WR016527
[19] Rosenzweig, C., J. Elliott, D. Deryng, et al., 2014: Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proc. Natl. Acad. Sci. USA, 111, 3268–3273. doi: 10.1073/pnas.1222463110
[20] Shao, Q. Q., W. Cao, J. W. Fan, et al., 2017: Effects of an ecological conservation and restoration project in the Three-River Source Region, China. J. Geogr. Sci., 27, 183–204. doi: 10.1007/s11442-017-1371-y
[21] Su, Z., J. Wen, and W. Wagner, 2010: Preface “Advances in land surface hydrological processes—field observations, modeling and data assimilation”. Hydrol. Earth Syst. Sci., 14, 365–367. doi: 10.5194/hess-14-365-2010
[22] Swenson, S. C., and D. M. Lawrence, 2014: Assessing a dry surface layer-based soil resistance parameterization for the Community Land Model using GRACE and FLUXNET-MTE data. J. Geophys. Res. Atmos., 119, 10299–10312. doi: 10.1002/2014JD022314
[23] Taylor, K. E., 2001: Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res. Atmos., 106, 7183–7192. doi: 10.1029/2000JD900719
[24] Yang, K., Y.-Y. Chen, and J. Qin, 2009: Some practical notes on the land surface modeling in the Tibetan Plateau. Hydrol. Earth Syst. Sci., 13, 687–701. doi: 10.5194/hess-13-687-2009
[25] Yang, Z.-L., R. E. Dickinson, A. Henderson-Sellers, et al., 1995: Preliminary study of spin-up processes in land surface models with the first stage data of Project for Intercomparison of Land Surface Parameterization Schemes Phase 1(a). J. Geophys. Res. Atmos., 100, 16553–16578. doi: 10.1029/95JD01076
[26] Yin, F., X. Z. Deng, Q. Jin, et al., 2014: The impacts of climate change and human activities on grassland productivity in Qinghai Province, China. Front. Earth Sci., 8, 93–103. doi: 10.1007/s11707-013-0390-y
[27] Yuan, X., P. Ji, L. Y. Wang, et al., 2018: High-resolution land surface modeling of hydrological changes over the Sanjiangyuan region in the eastern Tibetan Plateau: 1. Model development and evaluation. J. Adv. Model. Earth Syst., 10, 2806–2828. doi: 10.1029/2018MS001412
[28] Zhang, G., G. S. Zhou, and F. Chen, 2017: Analysis of parameter sensitivity on surface heat exchange in the Noah land surface model at a temperate desert steppe site in China. J. Meteor. Res., 31, 1167–1182. doi: 10.1007/s13351-017-7050-1
[29] Zhou, H. K., X. Q. Zhao, Y. H. Tang, et al., 2005: Alpine grassland degradation and its control in the source region of the Yangtze and Yellow Rivers, China. Grassl. Sci., 51, 191–203. doi: 10.1111/j.1744-697X.2005.00028.x